Tuesday, September 13, 2016
Research Paper
Prion-Seeding Activity Is widely Distributed in Tissues of Sporadic
Creutzfeldt-Jakob Disease Patients
Hanae Takatsuki PhDa, Takayuki Fuse PhDa, Takehiro Nakagaki MD, PhDa,
TsuyoshiMori PhDb, Ban Mihara MD, PhDc, Masaki TakaoMD, PhDc,d, Yasushi Iwasaki
MD, PhDe, Mari Yoshida MD, PhDe, Shigeo Murayama MD, PhDf, Ryuichiro Atarashi
MD, PhDb, Noriyuki Nishida MD, PhDa, Katsuya Satoh MD, PhDg,⁎
a Department of Molecular Microbiology and Immunology, Nagasaki University
Graduate School of Biomedical Sciences, Nagasaki, Japan
b Department of Infectious Diseases, Faculty of Medicine, University of
Miyazaki, Miyazaki, Japan
c Department of Neurology, Institute of Brain and Blood Vessels, Mihara
Memorial Hospital, Isesaki, Japan
d Department of Neurology International Medical Center, Saitama Medical
University, Saitama, Japan
e Department of Neuropathology, Institute for Medical Science of Aging,
Aichi Medical University, Aichi, Japan
f Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital and
Institute of Gerontology, Tokyo, Japan
g Department of Locomotive Rehabilitation Science, Nagasaki University
Graduate School of Biomedical Sciences, Nagasaki, Japan
Article history: Received 11 June 2016 Received in revised form 16 August
2016 Accepted 23 August 2016 Available online xxxx
ABSTRACT
Human prion diseases are neurodegenerative disorders caused by abnormally
folded prion proteins in the central nervous system. These proteins can be
detected using the quaking-induced conversion assay. Compared with other
bioassays, this assay is extremely sensitive and was used in the present study
to determine prion distribution in sporadic Creutzfeldt-Jakob disease patients
at autopsy. Although infectivity of the sporadic form is thought to be
restricted within the central nervous system, results showed that prion-seeding
activities reach 106/g from a 50% seeding dose in non-neuronal tissues,
suggesting that prion-seeding activity exists in non-neural organs, and we
suggested that non-neural tissues of 106/g SD50 did not exist the
infectivity.
Keywords: Prion Prion-seeding activity SD50 Non-neural tissue
Creutzfeldt-Jakob disease
© 2016 The Authors. Published by Elsevier B.V. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
snip...
4. Discussion
Prion-seeding activity in tissues from sCJD patients was evaluated using
the endpoint RT-QuIC assay, which revealed an unexpectedly wide distribution of
prion activity in all tested patients. The SD50 values reached approximately
106/g in extra-neural organs. With the exception of a single adrenal gland
(Patient #2), we were not able to detect PrP-res using theWestern blotting assay
with PTA.We also did not observe abnormal PrP-immunopositivity on tissue
sections. However, this could be due to prion-seeding activities in non-neuronal
tissues that were 10,000 times lower than in brain tissues.
The RT-QuIC assaywas approximately 104 timesmore sensitive than the
bioassay using knock-in mice expressing a human-mouse chimeric PrP (Fig. 1),
although the SD50 was reported to be 100 times greater than the LD50 of 263 K
hamster prions (Atarashi et al., 2011). Because the prion-seeding activity in
kidney tissues of sCJD patients was 105.5– 6.25/g, for example, infectivity
(LD50) could be 101.5/g in the organ. This is an extremely low level of
infectivity compared with CNS infections. However, it should not be overlooked
that prion activity could become detectable in peripheral organs, because human
prion disease can develop even after a 30–40-year incubation period (Collinge et
al., 2006).
Additionally, the tissue volume was 103–4 greater than the human brain
volume, and PrP-res in non-neuronal tissues was 103–4 greater than in the brain.
Ourmethod allowed detection of PrP-res in the spleen of Patient #2 (Fig. 3). The
SD50 in the Patient #2 brain (SD50: 9.42)was 103–4 greater than the SD50 in the
spleen of Patient #2 (SD50: 6.25). Therefore, our method successfully
concentrated tissues by approximately 103–4 greater than standard Western
blotting.
Expression of physiological PrP in the human body has been well studied.
PrPC is expressed in almost all tissues, although mRNA expression levels are
highest in the CNS; the spleen and liver are 1/20 of the cortex, the lungs are
1/10, and the kidneys and adrenal glands are 1/5 (The Genotype-Tissue Expression
(GTEx) project, 2013; Uhlen et al., 2015). PrP-res has been detected in the
spleen and muscles of some sCJD patients by Western blotting analysis when
PrP-res in the samples was concentrated by PTA (Glatzel et al., 2003). However,
we cannot ignore the possibility that seeding activities detected in peripheral
tissues are a result of infectious agents overflowing from the CNS, because
results showthat kidneys and adrenal glands can be infected and produce abnormal
PrP in situ. This study is the first to identify prion-seeding activities in the
kidney or liver, and we may have to collect organs from pre-symptomatic CJD
patients. The highly sensitive RT-QuIC assay may be useful for providing safer
methods and techniques when using human materials.
Fig. 3.Western blotting analysis of PrP-res in tissue fromsporadic CJD
patients using the concentrationmethod,which precipitates the sample by
centrifugal separation. The brain (1 mg) or tissue (100mg of weight)
homogenates, such as spleen, kidney, adrenal gland, liver, or lung fromnormal
persons (a–b, upper panel) or sporadic CJD patient 2 (a, lower panel) and 4 (b,
lower panel),were digestedwith PK and sampleswere prepared forWestern blotting
(see Materials and Methods). The tissues (100mg) and brain (1, 10, or 100 μg)
sampleswere loaded on SDS-PAGE, and PrPSc was detected using anti-PrP (3F4)
monoclonal antibody and anti-mouse IgG antibody-conjugated HRP. The brain
samples were used as a detection limit for Western blotting. The rate indicates
measured band intensity, which was compared with brain samples. Recombinant
human PrP is used as expose control. c) Detection limits were compared between
concentration (C) and standard (S) method. PK-digested samples directly mixed
with sample buffer in standard methods, which loaded to indicating weight.
(N.D.: Not detected.) H. Takatsuki et al. / EBioMedicine xxx (2016) xxx–xxx
5
Please cite this article as: Takatsuki, H., et al., Prion-Seeding Activity
Is widely Distributed in Tissues of Sporadic Creutzfeldt-Jakob Disease Patients,
EBioMedicine (2016), http://dx.doi.org/10.1016/j.ebiom.2016.08.033
Case Report ARTICLE
Front. Neurol., 29 August 2016 | http://dx.doi.org/10.3389/fneur.2016.00138
Creutzfeldt–Jakob Disease: Analysis of Four Cases
imageAli Al Balushi*, imageMarshall W. Meeks, imageGhazala Hayat and
imageJafar Kafaie Department of Neurology, Saint Louis University School of
Medicine, Saint Louis, MO, USA
Background: Creutzfeldt–Jakob disease (CJD) is a rare, rapidly progressive
neurodegenerative disease that almost always results in death in under a year
from onset of symptoms. Here, we report four cases of CJD with different
clinical presentations diagnosed at our institution over a 2-year period.
Cases: The first patient is an 82-year-old woman who presented with
depression, cognitive decline, and word-finding difficulty over 4 weeks. The
patient deteriorated neurologically to akinetic mutism and death within 6 weeks
of presentation. The second patient is a 54-year-old woman with liver cirrhosis
who presented with confusion, ataxia, and multiple falls over 4 weeks. She was
treated initially for hepatic encephalopathy but continued to progress to
mutism, startle myoclonus, and obtundation. Death occurred within 4 weeks of
presentation. The third patient is a 58-year-old woman who presented with an
8-week history of confusion, urinary incontinence, Parkinsonism, ataxia, and
myoclonus. Death occurred within 2 months from presentation. The fourth patient
is a 67-year-old man who presented with a 6-week history of headache, blurred
vision, ataxia, and personality change and progressed to confusion, myoclonus,
akinetic mutism, and obtundation. Death occurred within 3 weeks from
presentation.
Conclusion: These four cases highlight the varied possible clinical
presentations of CJD and demonstrate the importance of considering CJD in
patients with atypical presentations of rapidly progressive cognitive decline.
To diagnose CJD, brain biopsy remains the gold standard. However, the presence
of CSF protein 14-3-3, typical MRI findings and suggestive EEG abnormalities,
all support the diagnosis
snip...see full text ;
Oral Session14:45~15:00O-12 Wenquan Zou
*** PrPSc in the skin of CJD patients
Accessing transmissibility and diagnostic marker of skin prions.
Kong, Qingzhong Safar, Jiri G. Zou, Wen-Quan
Case Western Reserve University, Cleveland, OH, United States
Abstract The fatal, transmissible animal and human prion diseases are
characterized by the deposition in the brain of a proteinase K (PK)-resistant
infectious prion protein (PrPSc), an isoform derived from the cellular protein
(PrPC) through misfolding. A definitive antemortem diagnosis is virtually
impossible for most patients because of the difficulty in obtaining the brain
tissues by biopsy. Recently, PrPSc has been reported to be detected in the skin
of experimentally or naturally scrapie-infected animals (Thomzig et al., 2007).
Consistent with this finding, we have observed PK-resistant PrP in the skin of a
patient with variant Creutzfeldt-Jakob disease (vCJD), an acquired form of human
prion disease caused by bovine prion (Notari et al., 2010). Unexpectedly, our
latest preliminary study identified two types of PK-resistant PrP molecules
[with gel mobility similar to the PrPSc types 1 and 2 from the brain of sporadic
CJD (sCJD)] in the fibroblast cells extracted from the skin of clinical sCJD
patients and asymptomatic subjects carrying PrP mutations linked to familial CJD
(fCJD). We also detected PrPSc in the skin of humanized transgenic (Tg) mice
inoculated intracerebrally with a human prion. Moreover, prion infectivity has
been observed in the skin of infected greater kudu (Cunningham et al., 2004) and
a murine prion inoculated to mice via skin scarification can not only propagate
in the skin, but also spread to the brain to cause prion disease (Wathne et al.,
2012). We hypothesize that the skin of patients with prion disease harbors prion
infectivity and the presence of PK-resistant PrP in the skin is a novel
diagnostic marker for preclinical CJD patients. To test the hypotheses, we
propose to (1) determine prion infectivity of the skin- derived fibroblasts and
skin of sCJD patients and asymptomatic PrP-mutation carriers using humanized Tg
mouse bioassay, (2) to pinpoint the earliest stage at which PrPSc becomes
detectable in the skin of prion- infected Tg mice, and (3) to detect PrPSc in
the skin of various human prion diseases, using conventional as well as highly
sensitive RT-QuIC assays for both (2) and (3). If successful, our proposal may
not only help prevent potential transmission of human prion diseases but also
enable definitive and less intrusive antemortem diagnosis of prion diseases.
Finally, knowledge generated from this study may also enhance our understanding
of other neurodegenerative diseases such as Alzheimer's disease.
Public Health Relevance Currently it is unclear whether or not the skin of
patients with prion diseases is infectious and, moreover, there is no
alternative preclinical definitive testing or the brain biopsy in the prion
diseases. The aim of our proposal is to address the issues by detection of the
infectivity of patients' skin samples using animal bioassay and a new highly
sensitive RT-QuIC assay. We believe that our study will not only provide
insights into the pathogenesis and transmissibility of prion disease but also
will develop preclinical definitive testing for prion disease.
Funding Agency Agency National Institute of Health (NIH)
Institute National Institute of Neurological Disorders and Stroke
(NINDS)
Type Exploratory/Developmental Grants (R21)
Project # 1R21NS096626-01
Application # 9092119
Study Section Special Emphasis Panel (ZRG1)
Program Officer Wong, May Project Start 2016-02-01
Project End 2018-01-31
Budget Start 2016-02-01
Budget End 2017-01-31
Support Year 1
Fiscal Year 2016
Total Cost
Indirect Cost Institution Name Case Western Reserve University
Department Pathology
Type Schools of Medicine
DUNS # 077758407
City Cleveland
State OH
Country United States
Zip Code 44106
Circulation of prions within dust on a scrapie affected farm
Kevin C Gough1, Claire A Baker2, Hugh A Simmons3, Steve A Hawkins3 and Ben
C Maddison2*
Abstract
Prion diseases are fatal neurological disorders that affect humans and
animals. Scrapie of sheep/goats and Chronic Wasting Disease (CWD) of deer/elk
are contagious prion diseases where environmental reservoirs have a direct link
to the transmission of disease. Using protein misfolding cyclic amplification we
demonstrate that scrapie PrPSc can be detected within circulating dusts that are
present on a farm that is naturally contaminated with sheep scrapie. The
presence of infectious scrapie within airborne dusts may represent a possible
route of infection and illustrates the difficulties that may be associated with
the effective decontamination of such scrapie affected premises.
snip...
Discussion
We present biochemical data illustrating the airborne movement of scrapie
containing material within a contaminated farm environment. We were able to
detect scrapie PrPSc within extracts from dusts collected over a 70 day period,
in the absence of any sheep activity. We were also able to detect scrapie PrPSc
within dusts collected within pasture at 30 m but not at 60 m distance away from
the scrapie contaminated buildings, suggesting that the chance of contamination
of pasture by scrapie contaminated dusts decreases with distance from
contaminated farm buildings. PrPSc amplification by sPMCA has been shown to
correlate with infectivity and amplified products have been shown to be
infectious [14,15]. These experiments illustrate the potential for low dose
scrapie infectivity to be present within such samples. We estimate low ng levels
of scrapie positive brain equivalent were deposited per m2 over 70 days, in a
barn previously occupied by sheep affected with scrapie. This movement of dusts
and the accumulation of low levels of scrapie infectivity within this
environment may in part explain previous observations where despite stringent
pen decontamination regimens healthy lambs still became scrapie infected after
apparent exposure from their environment alone [16]. The presence of sPMCA
seeding activity and by inference, infectious prions within dusts, and their
potential for airborne dissemination is highly novel and may have implications
for the spread of scrapie within infected premises. The low level circulation
and accumulation of scrapie prion containing dust material within the farm
environment will likely impede the efficient decontamination of such scrapie
contaminated buildings unless all possible reservoirs of dust are removed.
Scrapie containing dusts could possibly infect animals during feeding and
drinking, and respiratory and conjunctival routes may also be involved. It has
been demonstrated that scrapie can be efficiently transmitted via the nasal
route in sheep [17], as is also the case for CWD in both murine models and in
white tailed deer [18-20].
The sources of dust borne prions are unknown but it seems reasonable to
assume that faecal, urine, skin, parturient material and saliva-derived prions
may contribute to this mobile environmental reservoir of infectivity. This work
highlights a possible transmission route for scrapie within the farm
environment, and this is likely to be paralleled in CWD which shows strong
similarities with scrapie in terms of prion dissemination and disease
transmission. The data indicate that the presence of scrapie prions in dust is
likely to make the control of these diseases a considerable challenge.
*** Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes
contaminated during neurosurgery ***
Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC.
Laboratory of Central Nervous System Studies, National Institute of Neurological
Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892.
Stereotactic multicontact electrodes used to probe the cerebral cortex of a
middle aged woman with progressive dementia were previously implicated in the
accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger
patients. The diagnoses of CJD have been confirmed for all three cases. More
than two years after their last use in humans, after three cleanings and
repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were
implanted in the cortex of a chimpanzee. Eighteen months later the animal became
ill with CJD. This finding serves to re-emphasise the potential danger posed by
reuse of instruments contaminated with the agents of spongiform
encephalopathies, even after scrupulous attempts to clean them.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8006664&dopt=Abstract
Wednesday, September 07, 2016
*** Michigan Launches an investigation into the Detroit Medical Center
dirty, broken and missing surgical instruments, what about the CJD TSE PRION
iatrogenic threat past and present therefrom? ***
Suspect deer for chronic wasting disease identified in Ingham County
Michigan Department of Natural Resources sent this bulletin at 09/12/2016
01:12 PM EDT
Statewide DNR News
Sept. 12, 2016
Contact: Chad Stewart, 517-284-4745 or Kelly Straka, 517-336-5040
Suspect deer for chronic wasting disease identified in Ingham County
Tuesday, July 05, 2016
Michigan DNR announces expansion of Chronic Wasting Disease Core Area and
Management Zone
Friday, March 18, 2016
Michigan confirms additional CWD-positive free-ranging, white-tailed deer,
bringing the total to seven
CWD TSE PRION HUMAN ZOONOSIS POTENTIAL, has it already happened, and being
masked as sporadic CJD? and what about iatrogenic, or the pass if forward,
friendly fire mode of transmission of cwd to humans, same thing, sporadic cjd ?
*** WDA 2016 NEW YORK ***
We found that CWD adapts to a new host more readily than BSE and that human
PrP was unexpectedly prone to misfolding by CWD prions. In addition, we
investigated the role of specific regions of the bovine, deer and human PrP
protein in resistance to conversion by prions from another species. We have
concluded that the human protein has a region that confers unusual
susceptibility to conversion by CWD prions.
Student Presentations Session 2
The species barriers and public health threat of CWD and BSE prions
Ms. Kristen Davenport1, Dr. Davin Henderson1, Dr. Candace Mathiason1, Dr.
Edward Hoover1 1Colorado State University
Chronic wasting disease (CWD) is spreading rapidly through cervid
populations in the USA. Bovine spongiform encephalopathy (BSE, mad cow disease)
arose in the 1980s because cattle were fed recycled animal protein. These and
other prion diseases are caused by abnormal folding of the normal prion protein
(PrP) into a disease causing form (PrPd), which is pathogenic to nervous system
cells and can cause subsequent PrP to misfold. CWD spreads among cervids very
efficiently, but it has not yet infected humans. On the other hand, BSE was
spread only when cattle consumed infected bovine or ovine tissue, but did infect
humans and other species. The objective of this research is to understand the
role of PrP structure in cross-species infection by CWD and BSE. To study the
propensity of each species’ PrP to be induced to misfold by the presence of PrPd
from verious species, we have used an in vitro system that permits detection of
PrPd in real-time. We measured the conversion efficiency of various combinations
of PrPd seeds and PrP substrate combinations. We observed the cross-species
behavior of CWD and BSE, in addition to feline-adapted CWD and BSE. We found
that CWD adapts to a new host more readily than BSE and that human PrP was
unexpectedly prone to misfolding by CWD prions. In addition, we investigated the
role of specific regions of the bovine, deer and human PrP protein in resistance
to conversion by prions from another species. We have concluded that the human
protein has a region that confers unusual susceptibility to conversion by CWD
prions. CWD is unique among prion diseases in its rapid spread in natural
populations. BSE prions are essentially unaltered upon passage to a new species,
while CWD adapts to the new species. This adaptation has consequences for
surveillance of humans exposed to CWD.
Wildlife Disease Risk Communication Research Contributes to Wildlife Trust
Administration Exploring perceptions about chronic wasting disease risks among
wildlife and agriculture professionals and stakeholders
PRION 2016 TOKYO
Zoonotic Potential of CWD Prions: An Update
Ignazio Cali1, Liuting Qing1, Jue Yuan1, Shenghai Huang2, Diane Kofskey1,3,
Nicholas Maurer1, Debbie McKenzie4, Jiri Safar1,3,5, Wenquan Zou1,3,5,6,
Pierluigi Gambetti1, Qingzhong Kong1,5,6
1Department of Pathology, 3National Prion Disease Pathology Surveillance
Center, 5Department of Neurology, 6National Center for Regenerative Medicine,
Case Western Reserve University, Cleveland, OH 44106, USA.
4Department of Biological Sciences and Center for Prions and Protein
Folding Diseases, University of Alberta, Edmonton, Alberta, Canada,
2Encore Health Resources, 1331 Lamar St, Houston, TX 77010
Chronic wasting disease (CWD) is a widespread and highly transmissible
prion disease in free-ranging and captive cervid species in North America. The
zoonotic potential of CWD prions is a serious public health concern, but the
susceptibility of human CNS and peripheral organs to CWD prions remains largely
unresolved. We reported earlier that peripheral and CNS infections were detected
in transgenic mice expressing human PrP129M or PrP129V. Here we will present an
update on this project, including evidence for strain dependence and influence
of cervid PrP polymorphisms on CWD zoonosis as well as the characteristics of
experimental human CWD prions.
PRION 2016 TOKYO
In Conjunction with Asia Pacific Prion Symposium 2016
PRION 2016 Tokyo
Prion 2016
Cervid to human prion transmission
Kong, Qingzhong
Case Western Reserve University, Cleveland, OH, United States
Abstract
Prion disease is transmissible and invariably fatal. Chronic wasting
disease (CWD) is the prion disease affecting deer, elk and moose, and it is a
widespread and expanding epidemic affecting 22 US States and 2 Canadian
provinces so far. CWD poses the most serious zoonotic prion transmission risks
in North America because of huge venison consumption (>6 million deer/elk
hunted and consumed annually in the USA alone), significant prion infectivity in
muscles and other tissues/fluids from CWD-affected cervids, and usually high
levels of individual exposure to CWD resulting from consumption of the affected
animal among often just family and friends. However, we still do not know
whether CWD prions can infect humans in the brain or peripheral tissues or
whether clinical/asymptomatic CWD zoonosis has already occurred, and we have no
essays to reliably detect CWD infection in humans. We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the
brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid
prion strain and influenced by the host (human) prion protein (PrP) primary
sequence;
(3) Reliable essays can be established to detect CWD infection in
humans;and
(4) CWD transmission to humans has already occurred. We will test these
hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in
vitro approaches.
Aim 1 will prove that the classical CWD strain may infect humans in brain
or peripheral lymphoid tissues at low levels by conducting systemic bioassays in
a set of "humanized" Tg mouse lines expressing common human PrP variants using a
number of CWD isolates at varying doses and routes. Experimental "human CWD"
samples will also be generated for Aim 3.
Aim 2 will test the hypothesis that the cervid-to-human prion transmission
barrier is dependent on prion strain and influenced by the host (human) PrP
sequence by examining and comparing the transmission efficiency and phenotypes
of several atypical/unusual CWD isolates/strains as well as a few prion strains
from other species that have adapted to cervid PrP sequence, utilizing the same
panel of humanized Tg mouse lines as in Aim 1.
Aim 3 will establish reliable essays for detection and surveillance of CWD
infection in humans by examining in details the clinical, pathological,
biochemical and in vitro seeding properties of existing and future experimental
"human CWD" samples generated from Aims 1-2 and compare them with those of
common sporadic human Creutzfeldt-Jakob disease (sCJD) prions.
Aim 4 will attempt to detect clinical CWD-affected human cases by examining
a significant number of brain samples from prion-affected human subjects in the
USA and Canada who have consumed venison from CWD-endemic areas utilizing the
criteria and essays established in Aim 3. The findings from this proposal will
greatly advance our understandings on the potential and characteristics of
cervid prion transmission in humans, establish reliable essays for CWD zoonosis
and potentially discover the first case(s) of CWD infection in humans.
Public Health Relevance There are significant and increasing human exposure
to cervid prions because chronic wasting disease (CWD, a widespread and highly
infectious prion disease among deer and elk in North America) continues
spreading and consumption of venison remains popular, but our understanding on
cervid-to-human prion transmission is still very limited, raising public health
concerns. This proposal aims to define the zoonotic risks of cervid prions and
set up and apply essays to detect CWD zoonosis using mouse models and in vitro
methods. The findings will greatly expand our knowledge on the potentials and
characteristics of cervid prion transmission in humans, establish reliable
essays for such infections and may discover the first case(s) of CWD infection
in humans.
LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL
THE WRONG PLACES $$$
*** These results would seem to suggest that CWD does indeed have zoonotic
potential, at least as judged by the compatibility of CWD prions and their human
PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests
that if zoonotic CWD occurred, it would most likely effect those of the PRNP
codon 129-MM genotype and that the PrPres type would be similar to that found in
the most common subtype of sCJD (MM1).***
PRION 2015 CONFERENCE FT. COLLINS CWD RISK FACTORS TO HUMANS
*** LATE-BREAKING ABSTRACTS PRION 2015 CONFERENCE ***
O18
Zoonotic Potential of CWD Prions
Liuting Qing1, Ignazio Cali1,2, Jue Yuan1, Shenghai Huang3, Diane Kofskey1,
Pierluigi Gambetti1, Wenquan Zou1, Qingzhong Kong1 1Case Western Reserve
University, Cleveland, Ohio, USA, 2Second University of Naples, Naples, Italy,
3Encore Health Resources, Houston, Texas, USA
*** These results indicate that the CWD prion has the potential to infect
human CNS and peripheral lymphoid tissues and that there might be asymptomatic
human carriers of CWD infection.
==================
***These results indicate that the CWD prion has the potential to infect
human CNS and peripheral lymphoid tissues and that there might be asymptomatic
human carriers of CWD infection.***
==================
P.105: RT-QuIC models trans-species prion transmission
Kristen Davenport, Davin Henderson, Candace Mathiason, and Edward Hoover
Prion Research Center; Colorado State University; Fort Collins, CO USA
Conversely, FSE maintained sufficient BSE characteristics to more
efficiently convert bovine rPrP than feline rPrP. Additionally, human rPrP was
competent for conversion by CWD and fCWD.
***This insinuates that, at the level of protein:protein interactions, the
barrier preventing transmission of CWD to humans is less robust than previously
estimated.
================
***This insinuates that, at the level of protein:protein interactions, the
barrier preventing transmission of CWD to humans is less robust than previously
estimated.***
================
*** PRICE OF CWD TSE PRION POKER GOES UP 2014 ***
Transmissible Spongiform Encephalopathy TSE PRION update January 2, 2014
*** chronic wasting disease, there was no absolute barrier to conversion of
the human prion protein.
*** Furthermore, the form of human PrPres produced in this in vitro assay
when seeded with CWD, resembles that found in the most common human prion
disease, namely sCJD of the MM1 subtype.
*** These results would seem to suggest that CWD does indeed have zoonotic
potential, at least as judged by the compatibility of CWD prions and their human
PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests
that if zoonotic CWD occurred, it would most likely effect those of the PRNP
codon 129-MM genotype and that the PrPres type would be similar to that found in
the most common subtype of sCJD (MM1).***
*** The potential impact of prion diseases on human health was greatly
magnified by the recognition that interspecies transfer of BSE to humans by beef
ingestion resulted in vCJD. While changes in animal feed constituents and
slaughter practices appear to have curtailed vCJD, there is concern that CWD of
free-ranging deer and elk in the U.S. might also cross the species barrier.
Thus, consuming venison could be a source of human prion disease. Whether BSE
and CWD represent interspecies scrapie transfer or are newly arisen prion
diseases is unknown. Therefore, the possibility of transmission of prion disease
through other food animals cannot be ruled out. There is evidence that vCJD can
be transmitted through blood transfusion. There is likely a pool of unknown size
of asymptomatic individuals infected with vCJD, and there may be asymptomatic
individuals infected with the CWD equivalent. These circumstances represent a
potential threat to blood, blood products, and plasma supplies.
***********CJD REPORT 1994 increased risk for consumption of veal and
venison and lamb***********
CREUTZFELDT JAKOB DISEASE SURVEILLANCE IN THE UNITED KINGDOM THIRD ANNUAL
REPORT AUGUST 1994
Consumption of venison and veal was much less widespread among both cases
and controls. For both of these meats there was evidence of a trend with
increasing frequency of consumption being associated with increasing risk of
CJD. (not nvCJD, but sporadic CJD...tss)
These associations were largely unchanged when attention was restricted to
pairs with data obtained from relatives. ...
Table 9 presents the results of an analysis of these data.
There is STRONG evidence of an association between ‘’regular’’ veal eating
and risk of CJD (p = .0.01).
Individuals reported to eat veal on average at least once a year appear to
be at 13 TIMES THE RISK of individuals who have never eaten veal.
There is, however, a very wide confidence interval around this estimate.
There is no strong evidence that eating veal less than once per year is
associated with increased risk of CJD (p = 0.51).
The association between venison eating and risk of CJD shows similar
pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK
OF CJD (p = 0.04).
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY
OF LAMB EATING (p = 0.02).
The evidence for such an association between beef eating and CJD is weaker
(p = 0.14). When only controls for whom a relative was interviewed are included,
this evidence becomes a little STRONGER (p = 0.08).
snip...
It was found that when veal was included in the model with another
exposure, the association between veal and CJD remained statistically
significant (p = < 0.05 for all exposures), while the other exposures ceased
to be statistically significant (p = > 0.05).
snip...
In conclusion, an analysis of dietary histories revealed statistical
associations between various meats/animal products and INCREASED RISK OF CJD.
When some account was taken of possible confounding, the association between
VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS
STATISTICALLY. ...
snip...
In the study in the USA, a range of foodstuffs were associated with an
increased risk of CJD, including liver consumption which was associated with an
apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3
studies in relation to this particular dietary factor, the risk of liver
consumption became non-significant with an odds ratio of 1.2 (PERSONAL
COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)
snip...see full report ;
CJD9/10022
October 1994
Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge
Spencers Lane BerksWell Coventry CV7 7BZ
Dear Mr Elmhirst,
CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT
Thank you for your recent letter concerning the publication of the third
annual report from the CJD Surveillance Unit. I am sorry that you are
dissatisfied with the way in which this report was published.
The Surveillance Unit is a completely independant outside body and the
Department of Health is committed to publishing their reports as soon as they
become available. In the circumstances it is not the practice to circulate the
report for comment since the findings of the report would not be amended. In
future we can ensure that the British Deer Farmers Association receives a copy
of the report in advance of publication.
The Chief Medical Officer has undertaken to keep the public fully informed
of the results of any research in respect of CJD. This report was entirely the
work of the unit and was produced completely independantly of the the
Department.
The statistical results reqarding the consumption of venison was put into
perspective in the body of the report and was not mentioned at all in the press
release. Media attention regarding this report was low key but gave a realistic
presentation of the statistical findings of the Unit. This approach to
publication was successful in that consumption of venison was highlighted only
once by the media ie. in the News at one television proqramme.
I believe that a further statement about the report, or indeed statistical
links between CJD and consumption of venison, would increase, and quite possibly
give damaging credence, to the whole issue. From the low key media reports of
which I am aware it seems unlikely that venison consumption will suffer
adversely, if at all.
http://web.archive.org/web/20030511010117/http://www.bseinquiry.gov.uk/files/yb/1994/10/00003001.pdf
Monday, May 02, 2016
*** Zoonotic Potential of CWD Prions: An Update Prion 2016 Tokyo ***
*** PRION 2014 CONFERENCE CHRONIC WASTING DISEASE CWD
*** PPo3-7: Prion Transmission from Cervids to Humans is Strain-dependent
*** Here we report that a human prion strain that had adopted the cervid
prion protein (PrP) sequence through passage in cervidized transgenic mice
efficiently infected transgenic mice expressing human PrP,
*** indicating that the species barrier from cervid to humans is prion
strain-dependent and humans can be vulnerable to novel cervid prion strains.
PPo2-27:
Generation of a Novel form of Human PrPSc by Inter-species Transmission of
Cervid Prions
*** Our findings suggest that CWD prions have the capability to infect
humans, and that this ability depends on CWD strain adaptation, implying that
the risk for human health progressively increases with the spread of CWD among
cervids.
PPo2-7:
Biochemical and Biophysical Characterization of Different CWD Isolates
*** The data presented here substantiate and expand previous reports on the
existence of different CWD strains.
Envt.07:
Pathological Prion Protein (PrPTSE) in Skeletal Muscles of Farmed and Free
Ranging White-Tailed Deer Infected with Chronic Wasting Disease
***The presence and seeding activity of PrPTSE in skeletal muscle from
CWD-infected cervids suggests prevention of such tissue in the human diet as a
precautionary measure for food safety, pending on further clarification of
whether CWD may be transmissible to humans.
>>>CHRONIC WASTING DISEASE , THERE WAS NO ABSOLUTE BARRIER TO
CONVERSION OF THE HUMAN PRION PROTEIN<<<
*** PRICE OF CWD TSE PRION POKER GOES UP 2014 ***
Transmissible Spongiform Encephalopathy TSE PRION update January 2, 2014
Wednesday, January 01, 2014
Molecular Barriers to Zoonotic Transmission of Prions
*** chronic wasting disease, there was no absolute barrier to conversion of
the human prion protein.
*** Furthermore, the form of human PrPres produced in this in vitro assay
when seeded with CWD, resembles that found in the most common human prion
disease, namely sCJD of the MM1 subtype.
Envt.07:
Pathological Prion Protein (PrPTSE) in Skeletal Muscles of Farmed and Free
Ranging White-Tailed Deer Infected with Chronic Wasting Disease
***The presence and seeding activity of PrPTSE in skeletal muscle from
CWD-infected cervids suggests prevention of such tissue in the human diet as a
precautionary measure for food safety, pending on further clarification of
whether CWD may be transmissible to humans.
Yet, it has to be noted that our assessments of PrPTSE levels in skeletal
muscles were based on findings in presumably pre- or subclinically infected
animals. Therefore, the concentration of PrPTSE in skeletal muscles of WTD with
clinically manifest CWD may possibly exceed our estimate which refers to
clinically inconspicuous animals that are more likely to enter the human food
chain. Our tissue blot findings in skeletal muscles from CWD-infected WTD would
be consistent with an anterograde spread of CWD prions via motor nerve fibres to
muscle tissue (figure 4A). Similar neural spreading pathways of muscle infection
were previously found in hamsters orally challenged with scrapie [28] and
suggested by the detection of PrPTSE in muscle fibres and muscle-associated
nerve fascicles of clinically-ill non-human primates challenged with BSE prions
[29]. Whether the absence of detectable PrPTSE in myofibers observed in our
study is a specific feature of CWD in WTD, or was due to a pre- or subclinical
stage of infection in the examined animals, remains to be established. In any
case, our observations support previous findings suggesting the precautionary
prevention of muscle tissue from CWD-infected WTD in the human diet, and
highlight the need to comprehensively elucidate of whether CWD may be
transmissible to humans. While the understanding of TSEs in cervids has made
substantial progress during the past few years, the assessment and management of
risks possibly emanating from prions in skeletal muscles of CWD-infected cervids
requires further research.
Prions in Skeletal Muscles of Deer with Chronic Wasting Disease Rachel C.
Angers1,*, Shawn R. Browning1,*,†, Tanya S. Seward2, Christina J. Sigurdson4,‡,
Michael W. Miller5, Edward A. Hoover4, Glenn C. Telling1,2,3,§ + Author
Affiliations
1 Department of Microbiology, Immunology and Molecular Genetics, University
of Kentucky, Lexington, KY 40536, USA. 2 Sanders Brown Center on Aging,
University of Kentucky, Lexington, KY 40536, USA. 3 Department of Neurology,
University of Kentucky, Lexington, KY 40536, USA. 4 Department of Microbiology,
Immunology and Pathology, Colorado State University, Fort Collins, CO 80523,
USA. 5 Colorado Division of Wildlife, Wildlife Research Center, Fort Collins, CO
80526, USA. ↵§ To whom correspondence should be addressed. E-mail:
gtell2@uky.edu ↵* These authors contributed equally to this work.
↵† Present address: Department of Infectology, Scripps Research Institute,
5353 Parkside Drive, RF-2, Jupiter, FL 33458, USA.
↵‡ Present address: Institute of Neuropathology, University of Zurich,
Schmelzbergstrasse 12, 8091 Zurich, Switzerland.
Abstract The emergence of chronic wasting disease (CWD) in deer and elk in
an increasingly wide geographic area, as well as the interspecies transmission
of bovine spongiform encephalopathy to humans in the form of variant Creutzfeldt
Jakob disease, have raised concerns about the zoonotic potential of CWD. Because
meat consumption is the most likely means of exposure, it is important to
determine whether skeletal muscle of diseased cervids contains prion
infectivity. Here bioassays in transgenic mice expressing cervid prion protein
revealed the presence of infectious prions in skeletal muscles of CWD-infected
deer, demonstrating that humans consuming or handling meat from CWD-infected
deer are at risk to prion exposure.
Exotic Meats USA Announces Urgent Statewide Recall of Elk Tenderloin
Because It May Contain Meat Derived From An Elk Confirmed To Have Chronic
Wasting Disease
Contact: Exotic Meats USA 1-800-680-4375
FOR IMMEDIATE RELEASE -- February 9, 2009 -- Exotic Meats USA of San
Antonio, TX is initiating a voluntary recall of Elk Tenderloin because it may
contain meat derived from an elk confirmed to have Chronic Wasting Disease
(CWD). The meat with production dates of December 29, 30 and 31, 2008 was
purchased from Sierra Meat Company in Reno, NV. The infected elk came from Elk
Farm LLC in Pine Island, MN and was among animals slaughtered and processed at
USDA facility Noah’s Ark Processors LLC.
Chronic Wasting Disease (CWD) is a fatal brain and nervous system disease
found in elk and deer. The disease is caused by an abnormally shaped protein
called a prion, which can damage the brain and nerves of animals in the deer
family. Currently, it is believed that the prion responsible for causing CWD in
deer and elk is not capable of infecting humans who eat deer or elk contaminated
with the prion, but the observation of animal-to-human transmission of other
prion-mediated diseases, such as bovine spongiform encephalopathy (BSE), has
raised a theoretical concern regarding the transmission of CWD from deer or elk
to humans. At the present time, FDA believes the risk of becoming ill from
eating CWD-positive elk or deer meat is remote. However, FDA strongly advises
consumers to return the product to the place of purchase, rather than disposing
of it themselves, due to environmental concerns.
Exotic Meats USA purchased 1 case of Elk Tenderloins weighing 16.9 lbs. The
Elk Tenderloin was sold from January 16 – 27, 2009. The Elk Tenderloins was
packaged in individual vacuum packs weighing approximately 3 pounds each. A
total of six packs of the Elk Tenderloins were sold to the public at the Exotic
Meats USA retail store. Consumers who still have the Elk Tenderloins should
return the product to Exotic Meats USA at 1003 NE Loop 410, San Antonio, TX
78209. Customers with concerns or questions about the Voluntary Elk Recall can
call 1-800-680-4375. The safety of our customer has always been and always will
be our number one priority.
Exotic Meats USA requests that for those customers who have products with
the production dates in question, do not consume or sell them and return them to
the point of purchase. Customers should return the product to the vendor. The
vendor should return it to the distributor and the distributor should work with
the state to decide upon how best to dispose. If the consumer is disposing of
the product he/she should consult with the local state EPA office.
#
COLORADO: Farmer's market meat recalled after testing positive for CWD
24.dec.08 9News.com Jeffrey Wolf
Elk meat that was sold at a farmer's market is being recalled because tests
show it was infected with chronic wasting disease. The Boulder County Health
Department and Colorado Department of Public Health and Environment issued the
recall Wednesday after the meat was sold at the Boulder County Fairgrounds on
Dec. 13. Although there isn't any human health risk connected with CWD, the
recalled was issued as a precaution. About 15 elk were bought from a commercial
ranch in Colorado in early December and processed at a licensed plant. All 15
were tested for CWD and one came up positive. The labeling on the product would
have the following information: *Seller: High Wire Ranch *The type of cut:
"chuck roast," "arm roast," "flat iron," "ribeye steak," "New York steak,"
"tenderloin," "sirloin tip roast," "medallions" or "ground meat." *Processor:
Cedaredge Processing *The USDA triangle containing the number "34645" People
with questions about this meat can contact John Pape, epidemiologist at the
Colorado Department of Public Health and Environment at 303-692-2628.
COULD NOT FIND any warning or recalls on these two sites confirming their
recall of CWD infected meat. ...TSS
Wednesday, April 06, 2011
Presence and Seeding Activity of Pathological Prion Protein (PrPTSE) in
Skeletal Muscles of White-Tailed Deer Infected with Chronic Wasting Disease
Prion Infectivity in Fat of Deer with Chronic Wasting Disease
Brent Race,# Kimberly Meade-White,# Richard Race, and Bruce Chesebro* Rocky
Mountain Laboratories, 903 South 4th Street, Hamilton, Montana 59840
Received 2 June 2009/ Accepted 24 June 2009
ABSTRACT Top ABSTRACT TEXT REFERENCES
Chronic wasting disease (CWD) is a neurodegenerative prion disease of
cervids. Some animal prion diseases, such as bovine spongiform encephalopathy,
can infect humans; however, human susceptibility to CWD is unknown. In
ruminants, prion infectivity is found in central nervous system and lymphoid
tissues, with smaller amounts in intestine and muscle. In mice, prion
infectivity was recently detected in fat. Since ruminant fat is consumed by
humans and fed to animals, we determined infectivity titers in fat from two
CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD
infectivity and might be a risk factor for prion infection of other species.
snip...
The highest risk of human contact with CWD might be through exposure to
high-titer CNS tissue through accidental skin cuts or corneal contact at the
time of harvest and butchering. However, the likelihood of a human consuming fat
infected with a low titer of the CWD agent is much higher. It is impossible to
remove all the fat present within muscle tissue, and fat consumption is
inevitable when eating meat. Of additional concern is the fact that meat from an
individual deer harvested by a hunter is typically consumed over multiple meals
by the same group of people. These individuals would thus have multiple
exposures to the CWD agent over time, which might increase the chance for
transfer of infection.
In the Rocky Mountain region of North America, wild deer are subject to
predation by wolves, coyotes, bears, and mountain lions. Although canines such
as wolves and coyotes are not known to be susceptible to prion diseases, felines
definitely are susceptible to BSE (9) and might also be infected by the CWD
agent. Deer infected with the CWD agent are more likely to be killed by
predators such as mountain lions (11). Peripheral tissues, including lymph
nodes, muscle, and fat, which harbor prion infectivity are more accessible for
consumption than CNS tissue, which has the highest level of infectivity late in
disease. Therefore, infectivity in these peripheral tissues may be important in
potential cross-species CWD transmissions in the wild.
The present finding of CWD infectivity in deer fat tissue raises the
possibility that prion infectivity might also be found in fat tissue of other
infected ruminants, such as sheep and cattle, whose fat and muscle tissues are
more widely distributed in both the human and domestic-animal food chains.
Although the infectivity in fat tissues is low compared to that in the CNS,
there may be significant differences among species and between prion strains.
Two fat samples from BSE agent-infected cattle were reported to be negative by
bioassay in nontransgenic RIII mice (3, 6). However, RIII mice are
10,000-fold-less sensitive to BSE agent infection than transgenic mice
expressing bovine PrP (4). It would be prudent to carry out additional
infectivity assays on fat from BSE agent-infected cattle and scrapie
agent-infected sheep using appropriate transgenic mice or homologous species to
determine the risk from these sources.
0C7.04
North American Cervids Harbor Two Distinct CWD Strains
Authors
Angers, R. Seward, T, Napier, D., Browning, S., Miller, M., Balachandran
A., McKenzie, D., Hoover, E., Telling, G. 'University of Kentucky; Colorado
Division of Wildlife, Canadian Food Inspection Agency; University Of Wisconsin;
Colorado State University.
Content
Despite the increasing geographic distribution and host range of CWD,
little is known about the prion strain(s) responsible for distinct outbreaks of
the disease. To address this we inoculated CWD-susceptible Tg(CerPrP)1536+/·
mice with 29 individual prion samples from various geographic locations in North
America. Upon serial passage, intrastudy incubation periods consistently
diverged and clustered into two main groups with means around 210 and 290 days,
with corresponding differences in neuropathology. Prion strain designations were
utilized to distinguish between the two groups: Type I CWD mice succumbed to
disease in the 200 day range and displayed a symmetrical pattern of vacuolation
and PrPSc deposition, whereas Type II CWD mice succumbed to disease near 300
days and displayed a strikingly different pattern characterized by large local
accumulations of florid plaques distributed asymmetrically. Type II CWD bears a
striking resemblance to unstable parental scrapie strains such as 87A which give
rise to stable, short incubation period strains such as ME7 under certain
passage conditions. In agreement, the only groups of CWD-inoculated mice with
unwavering incubation periods were those with Type I CWD. Additionally,
following endpoint titration of a CWD sample, Type I CWD could be recovered only
at the lowest dilution tested (10-1), whereas Type II CWD was detected in mice
inoculated with all dilutions resulting in disease. Although strain properties
are believed to be encoded in the tertiary structure of the infectious prion
protein, we found no biochemical differences between Type I and Type II CWD. Our
data confirm the co·existence of two distinct prion strains in CWD-infected
cervids and suggest that Type II CWD is the parent strain of Type I CWD.
see page 29, and see other CWD studies ;
Sunday, November 23, 2008
PRION October 8th - 10th 2008 Book of Abstracts
ADAPTATION OF CHRONIC WASTING DISEASE (CWD) INTO HAMSTERS, EVIDENCE OF A
WISCONSIN STRAIN OF CWD
Chad Johnson1, Judd Aiken2,3,4 and Debbie McKenzie4,5 1 Department of
Comparative Biosciences, University of Wisconsin, Madison WI, USA 53706 2
Department of Agriculture, Food and Nutritional Sciences, 3 Alberta Veterinary
Research Institute, 4.Center for Prions and Protein Folding Diseases, 5
Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
T6G 2P5
The identification and characterization of prion strains is increasingly
important for the diagnosis and biological definition of these infectious
pathogens. Although well-established in scrapie and, more recently, in BSE,
comparatively little is known about the possibility of prion strains in chronic
wasting disease (CWD), a disease affecting free ranging and captive cervids,
primarily in North America. We have identified prion protein variants in the
white-tailed deer population and demonstrated that Prnp genotype affects the
susceptibility/disease progression of white-tailed deer to CWD agent. The
existence of cervid prion protein variants raises the likelihood of distinct CWD
strains. Small rodent models are a useful means of identifying prion strains. We
intracerebrally inoculated hamsters with brain homogenates and phosphotungstate
concentrated preparations from CWD positive hunter-harvested (Wisconsin CWD
endemic area) and experimentally infected deer of known Prnp genotypes. These
transmission studies resulted in clinical presentation in primary passage of
concentrated CWD prions. Subclinical infection was established with the other
primary passages based on the detection of PrPCWD in the brains of hamsters and
the successful disease transmission upon second passage. Second and third
passage data, when compared to transmission studies using different CWD inocula
(Raymond et al., 2007) indicate that the CWD agent present in the Wisconsin
white-tailed deer population is different than the strain(s) present in elk,
mule-deer and white-tailed deer from the western United States endemic region.
snip...see full text here ;
Monday, September 05, 2016
Pathological features of chronic wasting disease in reindeer and
demonstration of horizontal transmission Major Findings for Norway
Wednesday, September 7, 2016
An assessment of the long-term persistence of prion infectivity in aquatic
environments
Terry S. Singeltary Sr.
Wednesday, September 07, 2016
Michigan Launches an investigation into the Detroit Medical Center dirty, broken and missing surgical instruments, what about the CJD TSE PRION iatrogenic threat past and present therefrom?
Michigan Launches an investigation into the Detroit Medical Center dirty,
broken and missing surgical instruments, what about the CJD TSE PRION iatrogenic
threat past and present therefrom?
State launches probe of dirty DMC instruments
Karen Bouffard and Joel Kurth, The Detroit News 11:51 a.m. EDT August 26,
2016
The state of Michigan launched an investigation into the Detroit Medical
Center on Thursday, the same day The Detroit News uncovered years of doctor
complaints about dirty, broken and missing surgical instruments.
“Based on The Detroit News story, our bureau has initiated an investigation
into issues related to the sterilization of surgical equipment at DMC
facilities,” Larry Horvath, director of the Michigan Bureau of Community Health
Systems, said in a statement.
“We encourage anyone with a complaint regarding these issues to please
contact the bureau.”
The investigation was announced on a day the DMC made no public reaction to
The Detroit News stories, but did send a memo to physicians about the stories.
Meanwhile, activists pushed for more transparency in reporting on health care
issues.
Jason Moon, a spokesman for the Community Health Systems bureau, would not
divulge details about the scope and nature of the investigation. The bureau,
which covers 20 types of health care facilities, performs state licensing and
federal certification regulatory duties as required by state and federal laws.
Its activities include issuance of state licenses and construction permits,
routine inspections, complaint investigations, enforcement of state and federal
requirements, and a host of other regulatory activities.
Complaints can be filed online at michigan.gov/lara or by phone at
800-882-6006.
The bureau’s announcement came hours after The News published an
investigation based on more than 200 pages of emails and internal reports
showing that doctors have expressed concern about patient safety for at least 11
years because of dirty instruments at the DMC’s campus in Midtown Detroit. The
News found that improperly sterilized tools complicated operations from brain
surgeries to spinal fusions, kept patients under anesthesia unnecessarily and
canceled dozens of operations.
Old blood and bone, even when they go through the sterilization process,
are biohazards that can trigger infection and even death if they come into
contact with patients.
And although internal complaints may be possible, the likelihood that
patients or their families would know that a dirty or broken instrument was
involved in their surgeries is low. There’s no requirement that a hospital or
its employees reveal that dirty or broken instruments were involved in a
surgery.
Detroit Medical Center officials and their for-profit owner, Tenet
Healthcare of Dallas, declined requests for comment Thursday about The News’
findings, pointing to an earlier statement saying the system has outsourced
management of instrument sterilization to a private company.
But DMC CEO Joe Mullany on Thursday sent a memo to physicians at the
hospitals containing “talking points” for employees and patients.
“The DMC disagrees with many assertions made in the article,” the memo
said. “Importantly ... there have been no safety issues and/or known Surgical
Site Infection (SSI) related to our past CSP services.”
DETROIT NEWS
Dirty, missing instruments plague DMC surgeries
The memo adds: “In the spirit of continuous improvement, we chose Unity
HealthTrust to help manage our CSP department, which began on June 1. ... We are
excited that Unity brings unique strategic solutions for achieving optimal
performance within this department.”
The memo urged the doctors to “apologize for any concern this article may
have caused” and to assure the patients that “patient safety is always our top
priority.”
The News’ story prompted calls for increased transparency in health care
that advocates such as Bret Jackson say is lacking.
“Patients should be told what’s gone wrong, and the public has a right to
know as well,” said Jackson, president of Economic Alliance for Michigan, a
nonprofit that works to lower health care costs. “We need more transparency,
more information going to the public about adverse events.”
Detroit Mayor Mike Duggan, who served as CEO of the DMC until he resigned
in 2012 to campaign for mayor, also declined comment Thursday on the stories.
Duggan attempted to fix the instrument situation in 2010 by consolidating three
sterile processing departments serving the systems’ five Midtown hospitals into
one in the basement at Detroit Receiving Hospital. The facility serves DMC’s
Children’s Hospital of Michigan and the Detroit Receiving, Harper University,
Hutzel Women’s and DMC Heart hospitals.
Emails obtained by The News show complaints about missing and dirty
surgical instruments continued for years after the consolidation.
“The mayor has been gone from DMC for four years and doesn’t have anything
to share,” said John Roach, a spokesman for Duggan, told The News.
The DMC has acknowledged problems with dirty instruments but said patients
were not harmed.
DETROIT NEWS
DMC, managers trade blame over dirty instruments
kbouffard@detroitnews.com
jkurth@detroitnews.com
Twitter: @kbouffardDN, @joeltkurth
To file a complaint
Here are three methods to file a complaint with the state of
Michigan:
1. An online form can be found at michigan.gov/lara.
2. The form, BCHS-361, may be submitted by mail, fax or email.
3. The toll-free complaint hotline is 800-882-6006.
What we found
Here are key findings from a Detroit News investigation into complaints
about dirty, missing and incomplete surgical instrument sets at the Detroit
Medical Center:
■More than 200 pages of internal emails and records show doctors and
administrators complained for at least 11 years about the situation. It has
lasted so long some doctors have stopped filing complaints.
■Improperly sterilized tools complicated operations from appendectomies and
brain surgeries to cleft palate repair and spinal fusions. Children’s Hospital
of Michigan alone reported at least 186 complaints over a 17-month period.
■Patients were kept under anesthesia for up to an hour as staffers replaced
instruments. Dozens of operations were canceled at the last minute, some after
anesthesia was administered. At least twice, a child’s chest or skull was open
for surgery when doctors discovered dirty instruments.
■The issues affect the five hospitals of the Detroit Medical Center’s
Midtown campus — Children’s Hospital, Detroit Receiving, Harper University,
Hutzel Women’s and DMC Heart hospitals.
■The problems are blamed on a 70-worker Central Sterile Processing
Department in the basement of Detroit Receiving that serve the Midtown
hospitals. Records show the department is beset with labor friction and low
morale and managers have complained disciplining employees is difficult.
■The DMC says no patients were infected because of dirty instruments. It
has hired a private company, Unity HealthTrust of Birmingham, Alabama, to assume
management of sterile processing and recommend changes.
DMC, managers trade blame over dirty instruments
Joel Kurth and Karen Bouffard, The Detroit News 12:59 p.m. EDT August 25,
2016
*** AS you can see from the emails below, there are now members of the
OPHTHALMOLOGY group who are so fed up and are at least threatening to consider
alternative centers to do their research...
MY God, how many of these patients have been needlessly exposed to the mad
cow disease agent the TSE Prion i.e. Creutzfeldt Jakob Disease CJD ???
HOW many decades will it be, before anyone knows ???
HOW man of those folks will die ???
PLEASE SEE MY CONCERNS for diagnosis of disease of the eye, all the
equipment used to diagnose these diseases, including the hvCJD, which would
expose all this ophthalmology equipment to the TSE Prion disease, then exposing
everyone after that that uses this equipment, i.e. clinical and
subclinical...
Sunday, January 17, 2016
Of Grave Concern Heidenhain Variant Creutzfeldt Jakob Disease
snip...
Friday, December 04, 2009
*** New guidance on decontamination of trial contact lenses and other
contact devices has been revealed for CJD AND vCJD
Thursday, January 29, 2009
***Medical Procedures and Risk for Sporadic Creutzfeldt-Jakob Disease,
Japan, 1999–2008 (WARNING TO Neurosurgeons and Ophthalmologists)
Wednesday, August 20, 2008
***Tonometer disinfection practice in the United Kingdom: A national survey
Home / Science News
***Eye procedure raises CJD concerns***
By STEVE MITCHELL, Medical Correspondent | Nov. 18, 2004 at 4:01 PM
WASHINGTON, Nov. 18 (UPI) -- A New York man who died from a rare brain
disorder similar to mad cow disease in May underwent an eye procedure prior to
his death that raises concerns about the possibility of transmitting the fatal
disease to others, United Press International has learned.
The development comes on the heels of the announcement Thursday by U.S.
Department of Agriculture officials of a possible second case of mad cow disease
in U.S. herds. Richard Da Silva, 58, of Orange County, N.Y., died from
Creutzfeldt Jakob disease, an incurable brain-wasting illness that strikes about
one person per million.
Richard's wife Ann Marie Da Silva told UPI he underwent a check for the eye
disease glaucoma in 2003, approximately a year before his death. The procedure
involves the use of a tonometer, which contacts the cornea -- an eye tissue that
can contain prions, the infectious agent thought to cause CJD.
Ann Marie's concern is that others who had the tonometer used on them could
have gotten infected.
A 2003 study by British researchers suggests her concerns may be justified.
A team led by J.W. Ironside from the National Creutzfeldt-Jakob Disease
Surveillance Unit at the University of Edinburgh examined tonometer heads and
found they can retain cornea tissue that could infect other people -- even after
cleaning and decontaminating the instrument.
"Retained corneal epithelial cells, following the standard decontamination
routine of tonometer prisms, may represent potential prion infectivity," the
researchers wrote in the British Journal of Ophthalmology last year. "Once the
infectious agent is on the cornea, it could theoretically infect the
brain."
Prions, misfolded proteins thought to be the cause of mad cow, CJD and
similar diseases, are notoriously difficult to destroy and are capable of
withstanding most sterilization procedures.
Laura Manuelidis, an expert on these diseases and section chief of surgery
in the neuropathology department at Yale University, agreed with the British
researchers that tonometers represent a potential risk of passing CJD to other
people.
Manuelidis told UPI she has been voicing her concern about the risks of
corneas since 1977 when her own study, published in the New England Journal of
Medicine, showed the eye tissue, if infected, could transmit CJD.
At the time the procedure was done on Richard Da Silva, about a year before
he died, she said it was "absolutely" possible he was infectious.
The CJD Incidents Panel, a body of experts set up by the U.K. Department of
Health, noted in a 2001 report that procedures involving the cornea are
considered medium risk for transmitting CJD. The first two patients who have a
contaminated eye instrument used on them have the highest risk of contracting
the disease, the panel said.
In 1999, the U.K. Department of Health banned opticians from reusing
equipment that came in contact with patients' eyes out of concern it could
result in the transmission of variant CJD, the form of the disease humans can
contract from consuming infected beef products.
Richard Da Silva was associated with a cluster of five other cases of CJD
in southern New York that raised concerns about vCJD.
None of the cases have been determined to stem from mad cow disease, but
concerns about the cattle illness in the United States could increase in light
of the USDA announcement Thursday that a cow tested positive on initial tests
for the disease. If confirmed, this would be the second U.S. case of the
illness; the first was detected in a Washington cow last December. The USDA said
the suspect animal disclosed Thursday did not enter the food chain. The USDA did
not release further details about the cow, but said results from further lab
tests to confirm the initial tests were expected within seven days.
Ann Marie Da Silva said she informed the New York Health Department and
later the eye doctor who performed the procedure about her husband's illness and
her concerns about the risk of transmitting CJD via the tonometer.
The optometrist -- whom she declined to name because she did not want to
jeopardize his career -- "didn't even know what this disease was," she
said.
"He said the health department never called him and I called them (the
health department) back and they didn't seem concerned about it," she added. "I
just kept getting angrier and angrier when I felt I was being dismissed."
She said the state health department "seems to have an attitude of don't
ask, don't tell" about CJD.
"There's a stigma attached to it," she said. "Is it because they're so
afraid the public will panic? I don't know, but I don't think that the answer is
to push things under the rug."
New York State Department of Health spokeswoman Claire Pospisil told UPI
she would look into whether the agency was concerned about the possibility of
transmitting CJD via tonometers, but she had not called back prior to story
publication.
Disposable tonometers are readily available and could avoid the risk of
transmitting the disease, Ironside and colleagues noted in their study. Ann
Marie Da Silva said she asked the optometrist whether he used disposable
tonometers and "he said 'No, it's a reusable one.'"
Ironside's team also noted other ophthalmic instruments come into contact
with the cornea and could represent a source of infection as they are either
difficult to decontaminate or cannot withstand the harsh procedures necessary to
inactivate prions. These include corneal burrs, diagnostic and therapeutic
contact lenses and other coated lenses.
*** Terry Singletary, whose mother died from a type of CJD called
Heidenhain Variant, told UPI health officials were not doing enough to prevent
people from being infected by contaminated medical equipment.
"They've got to start taking this disease seriously and they simply aren't
doing it," said Singletary, who is a member of CJD Watch and CJD Voice --
advocacy groups for CJD patients and their families.
U.S. Centers for Disease Control and Prevention spokeswoman Christine
Pearson did not return a phone call from UPI seeking comment. The agency's Web
site states the eye is one of three tissues, along with the brain and spinal
cord, that are considered to have "high infectivity."
The Web site said more than 250 people worldwide have contracted CJD
through contaminated surgical instruments and tissue transplants. This includes
as many as four who were infected by corneal grafts. The agency noted no such
cases have been reported since 1976, when sterilization procedures were
instituted in healthcare facilities.
Ironside and colleagues noted in their study, however, many disinfection
procedures used on optical instruments, such as tonometers, fail. They wrote
their finding of cornea tissue on tonometers indicates that "no current cleaning
and disinfection strategy is fully effective."
*** Singletary said CDC's assertion that no CJD cases from infected
equipment or tissues have been detected since 1976 is misleading.
*** "They have absolutely no idea" whether any cases have occurred in this
manner, he said, because CJD cases often aren't investigated and the agency has
not required physicians nationwide report all cases of CJD.
*** "There's no national surveillance unit for CJD in the United States;
people are dying who aren't autopsied, the CDC has no way of knowing" whether
people have been infected via infected equipment or tissues, he said.
Ann Marie Da Silva said she has contacted several members of her state's
congressional delegation about her concerns, including Rep. Sue Kelly, R-N.Y.,
and Sen. Charles Schumer, D-N.Y.
"Basically, what I want is to be a positive force in this, but I also want
more of a dialogue going on with the public and the health department," she
said.
Cadaver corneal transplants -- without family permission
Houston, Texas channel 11 news 28 Nov 99 Reported by Terry S. Singeltary
Sr.son of CJD victim
snip...see full text ;
Sunday, January 17, 2016
Of Grave Concern Heidenhain Variant Creutzfeldt Jakob Disease
HOW many people are now exposed to the Transmissible Spongiform
Encephalopathy TSE Prion aka mad cow type Prion disease ???
With not only BSE aka mad cow disease, but now Scrapie in sheep and goats
has been implicated to be very likely a zoonotic disease, and Chronic Wasting
Disease CWD in cervid spreading from state to state, consumption there from, and
then the iatrogenic pass it forward friendly fire mode of transmission, how many
humans are now becoming exposed to the TSE Prion via the iatrogenic route of
infection???
how many decades will it take to find out ???
please remember, all iatrogenic CJD (i.e. friendly fire or the pass it
forward mode of transmission) is, is sporadic CJD, until the route, source of
the sporadic CJD is discovered (some 30, 40, 50 years later), proven,
documented, put into the academic domain, and then put into the public domain.
I’m thinking what friendly fire from consumption of CWD TSE PRION will look like
in the hospital/medical/surgical/tissue/organ/bloood?
LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL
THE WRONG PLACES $$$
*** These results would seem to suggest that CWD does indeed have zoonotic
potential, at least as judged by the compatibility of CWD prions and their human
PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests
that if zoonotic CWD occurred, it would most likely effect those of the PRNP
codon 129-MM genotype and that the PrPres type would be similar to that found in
the most common subtype of sCJD (MM1).***
Subject: Re: CJD * Olympus Endoscope
Date: Tue, 12 Oct 1999 15:57:03 –0500
From: "Terry S. Singeltary Sr."
To: GOLDSS@...
References: 1
Dear Mr. Goldstine, Hello again, I hope the CDC has not changed your mind,
since our phone call, about sending me the information, in which we spoke of. I
am still waiting for the information, re-fax. Someone had told me, you would not
send me the information, but I told them you would, due to the importance of it
pertaining to public safety, and the fact, you are a Doctor. I hope you don't
disappoint me, and the rest of the public, and hide the facts, as the CDC and
NIH have for years. Olympus can be part of the Truth, or you can be part of the
cover-up. We are going to find out, sooner or later.
I already know, as do many more.
Still waiting,
Kind Regards,
Terry S. Singeltary Sr.
Wednesday, March 02, 2016
Endoscope Maker Olympus Agrees To $646 Million Settlement Over Kickbacks,
while still ignoring the elephant in the room, CJD TSE PRIONS Health Inc.
*** Evidence For CJD TSE Transmission Via Endoscopes 1-24-3 re-Singeltary
to Bramble et al ***
Evidence For CJD/TSE Transmission Via Endoscopes
From Terry S. Singletary, Sr flounder@wt.net 1-24-3
Thursday, April 28, 2016
Persistent residual contamination in endoscope channels; a fluorescence
epimicroscopy study
this must be on the forefront of research i.e. ‘iatrogenic’ transmission.
Alzheimer’s disease, iatrogenic, and Transmissible Spongiform
Encephalopathy TSE Prion disease, that is the question ???
>>> The only tenable public line will be that "more research is
required’’ <<<
>>> possibility on a transmissible prion remains
open<<<
O.K., so it’s about 23 years later, so somebody please tell me, when is
"more research is required’’ enough time for evaluation ?
http://web.archive.org/web/20040315075058/http://www.bseinquiry.gov.uk/files/yb/1992/12/16005001.pdf
SWISS MEDICAL WEEKLY
Alzheimer-type brain pathology may be transmitted by grafts of dura mater
26/01/2016 Singeltary comment ;
re-Evidence for human transmission of amyloid-β pathology and cerebral
amyloid angiopathy
Nature 525, 247?250 (10 September 2015) doi:10.1038/nature15369 Received 26
April 2015 Accepted 14 August 2015 Published online 09 September 2015 Updated
online 11 September 2015 Erratum (October, 2015)
snip...see full Singeltary Nature comment here;
Self-Propagative Replication of Ab Oligomers Suggests Potential
Transmissibility in Alzheimer Disease
*** Singeltary comment PLoS ***
Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion
disease, Iatrogenic, what if ?
Posted by flounder on 05 Nov 2014 at 21:27 GMT
Sunday, November 22, 2015
*** Effect of heating on the stability of amyloid A (AA) fibrils and the
intra- and cross-species transmission of AA amyloidosis Abstract
Amyloid A (AA) amyloidosis is a protein misfolding disease characterized by
extracellular deposition of AA fibrils. AA fibrils are found in several tissues
from food animals with AA amyloidosis. For hygienic purposes, heating is widely
used to inactivate microbes in food, but it is uncertain whether heating is
sufficient to inactivate AA fibrils and prevent intra- or cross-species
transmission. We examined the effect of heating (at 60 °C or 100 °C) and
autoclaving (at 121 °C or 135 °C) on murine and bovine AA fibrils using Western
blot analysis, transmission electron microscopy (TEM), and mouse model
transmission experiments. TEM revealed that a mixture of AA fibrils and
amorphous aggregates appeared after heating at 100 °C, whereas autoclaving at
135 °C produced large amorphous aggregates. AA fibrils retained antigen
specificity in Western blot analysis when heated at 100 °C or autoclaved at 121
°C, but not when autoclaved at 135 °C. Transmissible pathogenicity of murine and
bovine AA fibrils subjected to heating (at 60 °C or 100 °C) was significantly
stimulated and resulted in amyloid deposition in mice. Autoclaving of murine AA
fibrils at 121 °C or 135 °C significantly decreased amyloid deposition.
Moreover, amyloid deposition in mice injected with murine AA fibrils was more
severe than that in mice injected with bovine AA fibrils. Bovine AA fibrils
autoclaved at 121 °C or 135 °C did not induce amyloid deposition in mice. These
results suggest that AA fibrils are relatively heat stable and that similar to
prions, autoclaving at 135 °C is required to destroy the pathogenicity of AA
fibrils. These findings may contribute to the prevention of AA fibril
transmission through food materials to different animals and especially to
humans.
Purchase options Price * Issue Purchase USD 511.00 Article Purchase USD
54.00
*** Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes
contaminated during neurosurgery ***
Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC.
Laboratory of Central Nervous System Studies, National Institute of Neurological
Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892.
Stereotactic multicontact electrodes used to probe the cerebral cortex of a
middle aged woman with progressive dementia were previously implicated in the
accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger
patients. The diagnoses of CJD have been confirmed for all three cases. More
than two years after their last use in humans, after three cleanings and
repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were
implanted in the cortex of a chimpanzee. Eighteen months later the animal became
ill with CJD. This finding serves to re-emphasise the potential danger posed by
reuse of instruments contaminated with the agents of spongiform
encephalopathies, even after scrupulous attempts to clean them.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8006664&dopt=Abstract
New studies on the heat resistance of hamster-adapted scrapie agent:
Threshold survival after ashing at 600°C suggests an inorganic template of
replication
The infectious agents responsible for transmissible spongiform
encephalopathy (TSE) are notoriously resistant to most physical and chemical
methods used for inactivating pathogens, including heat. It has long been
recognized, for example, that boiling is ineffective and that higher
temperatures are most efficient when combined with steam under pressure (i.e.,
autoclaving). As a means of decontamination, dry heat is used only at the
extremely high temperatures achieved during incineration, usually in excess of
600°C. It has been assumed, without proof, that incineration totally inactivates
the agents of TSE, whether of human or animal origin.
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel
Production
Histochemical analysis of hamster brains inoculated with the solid residue
showed typical spongiform degeneration and vacuolation. Re-inoculation of these
brains into a new cohort of hamsters led to onset of clinical scrapie symptoms
within 75 days, suggesting that the specific infectivity of the prion protein
was not changed during the biodiesel process. The biodiesel reaction cannot be
considered a viable prion decontamination method for MBM, although we observed
increased survival time of hamsters and reduced infectivity greater than 6 log
orders in the solid MBM residue. Furthermore, results from our study compare for
the first time prion detection by Western Blot versus an infectivity bioassay
for analysis of biodiesel reaction products. We could show that biochemical
analysis alone is insufficient for detection of prion infectivity after a
biodiesel process.
Detection of protease-resistant cervid prion protein in water from a
CWD-endemic area
The data presented here demonstrate that sPMCA can detect low levels of
PrPCWD in the environment, corroborate previous biological and experimental data
suggesting long term persistence of prions in the environment2,3 and imply that
PrPCWD accumulation over time may contribute to transmission of CWD in areas
where it has been endemic for decades. This work demonstrates the utility of
sPMCA to evaluate other environmental water sources for PrPCWD, including
smaller bodies of water such as vernal pools and wallows, where large numbers of
cervids congregate and into which prions from infected animals may be shed and
concentrated to infectious levels.
A Quantitative Assessment of the Amount of Prion Diverted to Category 1
Materials and Wastewater During Processing
Keywords:Abattoir;bovine spongiform encephalopathy;QRA;scrapie;TSE
In this article the development and parameterization of a quantitative
assessment is described that estimates the amount of TSE infectivity that is
present in a whole animal carcass (bovine spongiform encephalopathy [BSE] for
cattle and classical/atypical scrapie for sheep and lambs) and the amounts that
subsequently fall to the floor during processing at facilities that handle
specified risk material (SRM). BSE in cattle was found to contain the most oral
doses, with a mean of 9864 BO ID50s (310, 38840) in a whole carcass compared to
a mean of 1851 OO ID50s (600, 4070) and 614 OO ID50s (155, 1509) for a sheep
infected with classical and atypical scrapie, respectively. Lambs contained the
least infectivity with a mean of 251 OO ID50s (83, 548) for classical scrapie
and 1 OO ID50s (0.2, 2) for atypical scrapie. The highest amounts of infectivity
falling to the floor and entering the drains from slaughtering a whole carcass
at SRM facilities were found to be from cattle infected with BSE at rendering
and large incineration facilities with 7.4 BO ID50s (0.1, 29), intermediate
plants and small incinerators with a mean of 4.5 BO ID50s (0.1, 18), and
collection centers, 3.6 BO ID50s (0.1, 14). The lowest amounts entering drains
are from lambs infected with classical and atypical scrapie at intermediate
plants and atypical scrapie at collection centers with a mean of 3 × 10−7 OO
ID50s (2 × 10−8, 1 × 10−6) per carcass. The results of this model provide key
inputs for the model in the companion paper published here.
*** Infectious agent of sheep scrapie may persist in the environment for at
least 16 years ***
Gudmundur Georgsson1, Sigurdur Sigurdarson2 and Paul Brown3
Thursday, August 13, 2015
Iatrogenic CJD due to pituitary-derived growth hormone with genetically
determined incubation times of up to 40 years
Thursday, June 04, 2015
Catholic Medical Center v. Civil No. 14-cv-180-JL Opinion No. 2015 DNH 110
Fireman’s Fund Insurance Company Creutzfeldt Jakob Disease TSE Prion tainted
medical instruments
UNITED STATES DISTRICT COURT DISTRICT OF NEW HAMPSHIRE
Tuesday, February 11, 2014
Novant Health Forsyth Medical Center Information on potential CJD exposure
Monday, February 10, 2014
18 Forsyth Medical Center patients exposed to CJD; apology issued...OOOPS,
SORRY, TOO BAD $$$
Thursday, January 16, 2014
The Anspach Effort, Inc. RECALL FDA Blackmax motor had been used in a case
where the patient was diagnosed with Creutzfeldt-Jacob Disease (CJD) MARYLAND
HOSTPITAL
Friday, January 10, 2014
*** vpspr, sgss, sffi, TSE, an iatrogenic by-product of gss, ffi, familial
type prion disease, what it ??? ***
Thursday, January 23, 2014
Medical Devices Containing Materials Derived from Animal Sources (Except
for In Vitro Diagnostic Devices) [Docket No. FDA–2013–D–1574]
Sunday, April 06, 2014
SPORADIC CJD and the potential for zoonotic transmission there from, either
directly or indirectly via friendly fire iatrogenic mode, evidence to date
Thursday, April 17, 2014
Novant: Three more may have been exposed to disease CJD
Wednesday, September 10, 2014
Creutzfeldt-Jakob disease (CJD) biannual update (August 2014), with updated
guidance on decontamination of gastrointestinal endoscopy equipment
Research and analysis
Tuesday, August 26, 2014
Blood reference materials from macaques infected with variant
Creutzfeldt-Jakob disease agent
Wednesday, November 27, 2013
NHS failed to sterilise surgical instruments contaminated with 'mad cow'
disease
Saturday, November 16, 2013
Management of neurosurgical instruments and patients exposed to
creutzfeldt-jakob disease 2013 December
Infect Control Hosp Epidemiol.
Tuesday, September 24, 2013
NORDION (US), INC., AND BIOAXONE BIOSCIENCES, INC., Settles $90M Mad Cow
TSE prion Contamination Suit Cethrin(R)
Case 0:12-cv-60739-RNS Document 1 Entered on FLSD Docket 04/26/2012 Page 1
of 15
Thursday, September 05, 2013
Possible Patient Exposure to Creutzfeldt-Jakob Disease Announced New
Hampshire DHHS
Press Release
Friday, July 19, 2013
Beaumont Hospital in Dublin assessing patients for CJD
Monday, April 15, 2013
Dr. Stephen B. Thacker Director Centers for Disease Control and
Prevention′s Office of Science, Epidemiology and Laboratory Services (OSELS)
dies from Creutzfeldt Jakob Disease CJD
Thursday, April 12, 2012
Health professions and risk of sporadic Creutzfeldt–Jakob disease, 1965 to
2010
Eurosurveillance, Volume 17, Issue 15, 12 April 2012
Research articles
Tuesday, July 31, 2012
11 patients may have been exposed to fatal disease Creutzfeldt-Jakob
Disease CJD Greenville Memorial Hospital
Thursday, August 02, 2012
CJD case in Saint John prompts letter to patients Canada CJD case in Saint
John prompts letter to patients
Tuesday, July 31, 2012
11 patients may have been exposed to fatal disease Creutzfeldt-Jakob
Disease CJD Greenville Memorial Hospital
Thursday, August 02, 2012
CJD case in Saint John prompts letter to patients Canada CJD case in Saint
John prompts letter to patients
Saturday, February 12, 2011
Another Pathologists dies from CJD, another potential occupational death ?
another happenstance of bad luck, a spontaneous event from nothing, or
friendly fire ???
Wednesday, November 30, 2011
First iCJD Death Confirmed in Korea
Thursday, December 08, 2011
A case of Iatrogenic Creutzfeldt Jakob Disease (iCJD) in a patient who had
received a German-manufactured human dura mater graft 23 years ago
Thursday, December 8, 2011
S. Korea confirms second case of iatrogenic Creutzfeldt-Jakob disease
48-year-old man
2011/12/08 11:08 KST
Monday, December 12, 2011
Second iatrogenic CJD case confirmed Korea
Saturday, February 13, 2016
The Risk of Prion Infection through Bovine Grafting Materials in dentistry
Saturday, January 16, 2016
Revised Preventive Measures to Reduce the Possible Risk of Transmission of
Creutzfeldt-Jakob Disease and Variant Creutzfeldt-Jakob Disease by Blood and
Blood Products Guidance for Industry
Tuesday, May 26, 2015
Minimise transmission risk of CJD and vCJD in healthcare settings Last
updated 15 May 2015
Friday, October 09, 2015
An alarming presentation level II trauma center of Creutzfeldt-Jakob
disease following a self-inflicted gunshot wound to the head
Wednesday, January 06, 2016
CREUTZFELDT JAKOB DISEASE SURVEILLANCE IN THE U.K. 23rd ANNUAL REPORT 2014
(published 18th November 2015)
Thursday, March 17, 2016
Preliminary Diagnosis Creutzfeldt-Jakob Disease Confirmed in Patient that
had Lumbar Puncture at Washington Regional Medical Center
all iatrogenic cjd is, is sporadic cjd, until the iatrogenic event is
discovered, traced back, documented in the Academic domain, and then put into
the public domain and documented as an iatrogenic CJD event. that’s why 85%+ of
all human TSE prion disease is still sporadic CJD. problem solved $$$
PLEASE REMEMBER, IN 55 YEARS AND OLDER, THE RATE OF DOCUMENTED CJD JUMPS TO
ONE IN 9,000.
Thursday, September 10, 2015
25th Meeting of the Transmissible Spongiform Encephalopathies Advisory
Committee Food and Drug Administration Silver Spring, Maryland June 1, 2015
Saturday, February 13, 2016
The Risk of Prion Infection through Bovine Grafting Materials in dentistry
Monday, February 15, 2016
Distinctive properties of plaque-type dura mater graft-associated
Creutzfeldt–Jakob disease in cell-protein misfolding cyclic amplification
Sunday, January 17, 2016
Of Grave Concern Heidenhain Variant Creutzfeldt Jakob Disease
Saturday, December 12, 2015
CREUTZFELDT JAKOB DISEASE CJD TSE PRION REPORT DECEMBER 14, 2015
Monday, August 22, 2016
CREUTZFELDT JAKOB DISEASE USA 2015 SPORADIC CJD TOTAL FIGURES REACHES
HIGHEST ANNUAL COUNT TO DATE AT 239 CONFIRMED CASES
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14,
2001 JAMA
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
To the Editor: In their Research Letter, Dr Gibbons and colleagues1
reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD)
has been stable since 1985. These estimates, however, are based only on reported
cases, and do not include misdiagnosed or preclinical cases. It seems to me that
misdiagnosis alone would drastically change these figures. An unknown number of
persons with a diagnosis of Alzheimer disease in fact may have CJD, although
only a small number of these patients receive the postmortem examination
necessary to make this diagnosis. Furthermore, only a few states have made CJD
reportable. Human and animal transmissible spongiform encephalopathies should be
reportable nationwide and internationally.
Terry S. Singeltary, Sr Bacliff, Tex
1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob
disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323.
TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION AKA MAD COW TYPE DISEASES
AND ZOONOTIC POTENTIAL UPDATE 2016
CWD TSE PRION HUMAN ZOONOSIS POTENTIAL, has it already happened, and being
masked as sporadic CJD? and what about iatrogenic, or the pass if forward,
friendly fire mode of transmission of cwd to humans, same thing, sporadic cjd ?
*** WDA 2016 NEW YORK ***
We found that CWD adapts to a new host more readily than BSE and that human
PrP was unexpectedly prone to misfolding by CWD prions. In addition, we
investigated the role of specific regions of the bovine, deer and human PrP
protein in resistance to conversion by prions from another species. We have
concluded that the human protein has a region that confers unusual
susceptibility to conversion by CWD prions.
Student Presentations Session 2
The species barriers and public health threat of CWD and BSE prions
Ms. Kristen Davenport1, Dr. Davin Henderson1, Dr. Candace Mathiason1, Dr.
Edward Hoover1 1Colorado State University
Chronic wasting disease (CWD) is spreading rapidly through cervid
populations in the USA. Bovine spongiform encephalopathy (BSE, mad cow disease)
arose in the 1980s because cattle were fed recycled animal protein. These and
other prion diseases are caused by abnormal folding of the normal prion protein
(PrP) into a disease causing form (PrPd), which is pathogenic to nervous system
cells and can cause subsequent PrP to misfold. CWD spreads among cervids very
efficiently, but it has not yet infected humans. On the other hand, BSE was
spread only when cattle consumed infected bovine or ovine tissue, but did infect
humans and other species. The objective of this research is to understand the
role of PrP structure in cross-species infection by CWD and BSE. To study the
propensity of each species’ PrP to be induced to misfold by the presence of PrPd
from verious species, we have used an in vitro system that permits detection of
PrPd in real-time. We measured the conversion efficiency of various combinations
of PrPd seeds and PrP substrate combinations. We observed the cross-species
behavior of CWD and BSE, in addition to feline-adapted CWD and BSE. We found
that CWD adapts to a new host more readily than BSE and that human PrP was
unexpectedly prone to misfolding by CWD prions. In addition, we investigated the
role of specific regions of the bovine, deer and human PrP protein in resistance
to conversion by prions from another species. We have concluded that the human
protein has a region that confers unusual susceptibility to conversion by CWD
prions. CWD is unique among prion diseases in its rapid spread in natural
populations. BSE prions are essentially unaltered upon passage to a new species,
while CWD adapts to the new species. This adaptation has consequences for
surveillance of humans exposed to CWD.
Wildlife Disease Risk Communication Research Contributes to Wildlife Trust
Administration Exploring perceptions about chronic wasting disease risks among
wildlife and agriculture professionals and stakeholders
Ms. Alyssa Wetterau1, Dr. Krysten Schuler1, Dr. Elizabeth Bunting1, Dr.
Hussni Mohammed1 1Cornell University
Chronic wasting disease (CWD) is a fatal disease of North American
Cervidae. New York State (NYS, USA) successfully managed an outbreak of CWD in
2005 in both captive and wild white-tailed deer (Odocoileus virginianus) with no
reoccurrence of the disease as of 2015. To attain maximum compliance and
efficacy of management actions for prevention of CWD entry, understanding the
varied risk perceptions will allow for targeted, proactive communication efforts
to address divergences between expert-derived risk assessments and stakeholder
risk perceptions. We examined perceived risks associated with CWD introduction
and exposure among agricultural and wildlife agency professionals within and
outside of NYS, as well as stakeholder groups (e.g., hunters and captive cervid
owners). We measured perceived risk using a risk assessment questionnaire online
via Qualtrics survey software and evaluated similarities within, as well as
differences in, perception among participant groups. New York State biologists
employed by the Department of Environmental Conservation and independent non-NYS
wildlife and agricultural professionals thought CWD risks associated with
captive cervids were high; captive cervid owners thought risks for wild and
captive cervids were low. Agriculture and wildlife professional groups agreed on
general risk perceptions. We ranked 15 individual risk hazards into high and low
medium categories based on all responses. Differences between groups were most
evident in hypothetical disease pathways. Any pathway involving inter-state
import of live cervids received high ranking for all groups except captive
cervid owners. Comparatively low risk perceptions by captive cervid operators
may stem from misinformation, lack of understanding of testing programs, and
indemnity payments for animal depopulation. Communication and education directed
at areas of disagreement may facilitate effective disease prevention and
management.
* No evaluation of determination of CWD risk is required for alternative
livestock or captive wildlife shipped directly to slaughter or to a biosecure
facility approved by the Division and the Dept. of Agriculture.
*** We found that CWD adapts to a new host more readily than BSE and that
human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we
investigated the role of specific regions of the bovine, deer and human PrP
protein in resistance to conversion by prions from another species. We have
concluded that the human protein has a region that confers unusual
susceptibility to conversion by CWD prions. CWD is unique among prion diseases
in its rapid spread in natural populations. BSE prions are essentially unaltered
upon passage to a new species, while CWD adapts to the new species. This
adaptation has consequences for surveillance of humans exposed to CWD. ***
PRION 2016 TOKYO
Zoonotic Potential of CWD Prions: An Update
Ignazio Cali1, Liuting Qing1, Jue Yuan1, Shenghai Huang2, Diane Kofskey1,3,
Nicholas Maurer1, Debbie McKenzie4, Jiri Safar1,3,5, Wenquan Zou1,3,5,6,
Pierluigi Gambetti1, Qingzhong Kong1,5,6
1Department of Pathology, 3National Prion Disease Pathology Surveillance
Center, 5Department of Neurology, 6National Center for Regenerative Medicine,
Case Western Reserve University, Cleveland, OH 44106, USA.
4Department of Biological Sciences and Center for Prions and Protein
Folding Diseases, University of Alberta, Edmonton, Alberta, Canada,
2Encore Health Resources, 1331 Lamar St, Houston, TX 77010
Chronic wasting disease (CWD) is a widespread and highly transmissible
prion disease in free-ranging and captive cervid species in North America. The
zoonotic potential of CWD prions is a serious public health concern, but the
susceptibility of human CNS and peripheral organs to CWD prions remains largely
unresolved. We reported earlier that peripheral and CNS infections were detected
in transgenic mice expressing human PrP129M or PrP129V. Here we will present an
update on this project, including evidence for strain dependence and influence
of cervid PrP polymorphisms on CWD zoonosis as well as the characteristics of
experimental human CWD prions.
PRION 2016 TOKYO
In Conjunction with Asia Pacific Prion Symposium 2016
PRION 2016 Tokyo
Prion 2016
Prion 2016
Purchase options Price * Issue Purchase USD 198.00
Cervid to human prion transmission
Kong, Qingzhong
Case Western Reserve University, Cleveland, OH, United States
Abstract
Prion disease is transmissible and invariably fatal. Chronic wasting
disease (CWD) is the prion disease affecting deer, elk and moose, and it is a
widespread and expanding epidemic affecting 22 US States and 2 Canadian
provinces so far. CWD poses the most serious zoonotic prion transmission risks
in North America because of huge venison consumption (>6 million deer/elk
hunted and consumed annually in the USA alone), significant prion infectivity in
muscles and other tissues/fluids from CWD-affected cervids, and usually high
levels of individual exposure to CWD resulting from consumption of the affected
animal among often just family and friends. However, we still do not know
whether CWD prions can infect humans in the brain or peripheral tissues or
whether clinical/asymptomatic CWD zoonosis has already occurred, and we have no
essays to reliably detect CWD infection in humans. We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the
brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid
prion strain and influenced by the host (human) prion protein (PrP) primary
sequence;
(3) Reliable essays can be established to detect CWD infection in
humans;and
(4) CWD transmission to humans has already occurred. We will test these
hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in
vitro approaches.
Aim 1 will prove that the classical CWD strain may infect humans in brain
or peripheral lymphoid tissues at low levels by conducting systemic bioassays in
a set of "humanized" Tg mouse lines expressing common human PrP variants using a
number of CWD isolates at varying doses and routes. Experimental "human CWD"
samples will also be generated for Aim 3.
Aim 2 will test the hypothesis that the cervid-to-human prion transmission
barrier is dependent on prion strain and influenced by the host (human) PrP
sequence by examining and comparing the transmission efficiency and phenotypes
of several atypical/unusual CWD isolates/strains as well as a few prion strains
from other species that have adapted to cervid PrP sequence, utilizing the same
panel of humanized Tg mouse lines as in Aim 1.
Aim 3 will establish reliable essays for detection and surveillance of CWD
infection in humans by examining in details the clinical, pathological,
biochemical and in vitro seeding properties of existing and future experimental
"human CWD" samples generated from Aims 1-2 and compare them with those of
common sporadic human Creutzfeldt-Jakob disease (sCJD) prions.
Aim 4 will attempt to detect clinical CWD-affected human cases by examining
a significant number of brain samples from prion-affected human subjects in the
USA and Canada who have consumed venison from CWD-endemic areas utilizing the
criteria and essays established in Aim 3. The findings from this proposal will
greatly advance our understandings on the potential and characteristics of
cervid prion transmission in humans, establish reliable essays for CWD zoonosis
and potentially discover the first case(s) of CWD infection in humans.
Public Health Relevance There are significant and increasing human exposure
to cervid prions because chronic wasting disease (CWD, a widespread and highly
infectious prion disease among deer and elk in North America) continues
spreading and consumption of venison remains popular, but our understanding on
cervid-to-human prion transmission is still very limited, raising public health
concerns. This proposal aims to define the zoonotic risks of cervid prions and
set up and apply essays to detect CWD zoonosis using mouse models and in vitro
methods. The findings will greatly expand our knowledge on the potentials and
characteristics of cervid prion transmission in humans, establish reliable
essays for such infections and may discover the first case(s) of CWD infection
in humans.
Funding Agency Agency National Institute of Health (NIH)
Institute National Institute of Neurological Disorders and Stroke (NINDS)
Type Research Project (R01)
Project # 1R01NS088604-01A1
Application # 9037884
Study Section Cellular and Molecular Biology of Neurodegeneration Study
Section (CMND)
Program Officer Wong, May
Project Start 2015-09-30
Project End 2019-07-31
Budget Start 2015-09-30
Budget End 2016-07-31
Support Year 1
Fiscal Year 2015
Total Cost $337,507
Indirect Cost $118,756
Institution
Name Case Western Reserve University
Department Pathology
Type Schools of Medicine
DUNS # 077758407
City Cleveland
State OH
Country United States
Zip Code 44106
===========================================================
We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the
brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid
prion strain and influenced by the host (human) prion protein (PrP) primary
sequence;
(3) Reliable essays can be established to detect CWD infection in
humans;and
(4) *** CWD transmission to humans has already occurred. *** We will test
these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary
in vitro approaches.
============================================================
Key Molecular Mechanisms of TSEs
Zabel, Mark D.
Colorado State University-Fort Collins, Fort Collins, CO, United States
Abstract Prion diseases, or transmissible spongiform encephalopathies (TSEs),
are fatal neurodegenerative diseases affecting humans, cervids, bovids, and
ovids. The absolute requirement of PrPC expression to generate prion diseases
and the lack of instructional nucleic acid define prions as unique infectious
agents. Prions exhibit species-specific tropism, inferring that unique prion
strains exist that preferentially infct certain host species and confront
transmission barriers to heterologous host species. However, transmission
barriers are not absolute. Scientific consensus agrees that the sheep TSE
scrapie probably breached the transmission barrier to cattle causing bovine
spongiform encephalopathy that subsequently breached the human transmission
barrier and likely caused several hundred deaths by a new-variant form of the
human TSE Creutzfeldt-Jakob disease in the UK and Europe. The impact to human
health, emotion and economies can still be felt in areas like farming, blood and
organ donations and the threat of a latent TSE epidemic. This precedent raises
the real possibility of other TSEs, like chronic wasting disease of cervids,
overcoming similar human transmission barriers. A groundbreaking discovery made
last year revealed that mice infected with heterologous prion strains facing
significant transmission barriers replicated prions far more readily in spleens
than brains6. Furthermore, these splenic prions exhibited weakened transmission
barriers and expanded host ranges compared to neurogenic prions. These data
question conventional wisdom of avoiding neural tissue to avoid prion
xenotransmission, when more promiscuous prions may lurk in extraneural tissues.
Data derived from work previously funded by NIH demonstrate that Complement
receptors CD21/35 bind prions and high density PrPC and differentially impact
prion disease depending on the prion isolate or strain used. Recent advances in
live animal and whole organ imaging have led us to generate preliminary data to
support novel, innovative approaches to assessing prion capture and transport.
We plan to test our unifying hypothesis for this proposal that CD21/35 control
the processes of peripheral prion capture, transport, strain selection and
xenotransmission in the following specific aims. 1. Assess the role of CD21/35
in splenic prion strain selection and host range expansion. 2. Determine whether
CD21/35 and C1q differentially bind distinct prion strains 3. Monitor the
effects of CD21/35 on prion trafficking in real time and space 4. Assess the
role of CD21/35 in incunabular prion trafficking
Public Health Relevance Transmissible spongiform encephalopathies, or prion
diseases, are devastating illnesses that greatly impact public health,
agriculture and wildlife in North America and around the world. The impact to
human health, emotion and economies can still be felt in areas like farming,
blood and organ donations and the threat of a latent TSE epidemic. This
precedent raises the real possibility of other TSEs, like chronic wasting
disease (CWD) of cervids, overcoming similar human transmission barriers. Early
this year Canada reported its first case of BSE in over a decade audits first
case of CWD in farmed elk in three years, underscoring the need for continued
vigilance and research. Identifying mechanisms of transmission and zoonoses
remains an extremely important and intense area of research that will benefit
human and other animal populations.
Funding Agency Agency National Institute of Health (NIH)
Institute National Institute of Allergy and Infectious Diseases (NIAID)
Type High Priority, Short Term Project Award (R56)
Project # 1R56AI122273-01A1
Application # 9211114
Study Section Cellular and Molecular Biology of Neurodegeneration Study
Section (CMND)
Program Officer Beisel, Christopher E
Project Start 2016-02-16
Project End 2017-01-31
Budget Start 2016-02-16
Budget End 2017-01-31
Support Year 1
Fiscal Year 2016
Total Cost
Indirect Cost Institution Name Colorado State University-Fort Collins
Department Microbiology/Immun/Virology
Type Schools of Veterinary Medicine
DUNS # 785979618 City Fort Collins
State CO
Country United States
Zip Code 80523
PMCA Detection of CWD Infection in Cervid and Non-Cervid Species
Hoover, Edward Arthur
Colorado State University-Fort Collins, Fort Collins, CO, United States
Abstract Chronic wasting disease (CWD) of deer and elk is an emerging highly
transmissible prion disease now recognized in 18 States, 2 Canadian provinces,
and Korea. We have shown that Infected deer harbor and shed high levels of
infectious prions in saliva, blood, urine, and feces, and in the tissues
generating those body fluids and excreta, thereby leading to facile transmission
by direct contact and environmental contamination. We have also shown that CWD
can infect some non-cervid species, thus the potential risk CWD represents to
domestic animal species and to humans remains unknown. Whether prions borne in
blood, saliva, nasal fluids, milk, or excreta are generated or modified in the
proximate peripheral tissue sites, may differ in subtle ways from those
generated in brain, or may be adapted for mucosal infection remain open
questions. The increasing parallels in the pathogenesis between prion diseases
and human neurodegenerative conditions, such as Alzheimer's and Parkinson's
diseases, add relevance to CWD as a transmissible protein misfolding disease.
The overall goal of this work is to elucidate the process of CWD prion
transmission from mucosal secretory and excretory tissue sites by addressing
these questions: (a) What are the kinetics and magnitude of CWD prion shedding
post-exposure? (b) Are excreted prions biochemically distinct, or not, from
those in the CNS? (c) Are peripheral epithelial or CNS tissues, or both, the
source of excreted prions? and (d) Are excreted prions adapted for horizontal
transmission via natural/trans-mucosal routes? The specific aims of this
proposal are: (1) To determine the onset and consistency of CWD prion shedding
in deer and cervidized mice; (2); To compare the biochemical and biophysical
properties of excretory vs. CNS prions; (3) To determine the capacity of
peripheral tissues to support replication of CWD prions; (4) To determine the
protease- sensitive infectious fraction of excreted vs. CNS prions; and (5) To
compare the mucosal infectivity of excretory vs. CNS prions. Understanding the
mechanisms that enable efficient prion dissemination and shedding will help
elucidate how horizontally transmissible prions evolve and succeed, and is the
basis of this proposal. Understanding how infectious misfolded proteins (prions)
are generated, trafficked, shed, and transmitted will aid in preventing,
treating, and managing the risks associated with these agents and the diseases
they cause.
Public Health Relevance Chronic wasting disease (CWD) of deer and elk is an
emergent highly transmissible prion disease now recognized throughout the USA as
well as in Canada and Korea. We have shown that infected deer harbor and shed
high levels of infectious prions in saliva, blood, urine, and feces thereby
leading to transmission by direct contact and environmental contamination. In
that our studies have also shown that CWD can infect some non-cervid species,
the potential risk CWD may represents to domestic animal species and humans
remains unknown. The increasing parallels in the development of major human
neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, and
prion diseases add relevance to CWD as a model of a transmissible protein
misfolding disease. Understanding how infectious misfolded proteins (prions) are
generated and transmitted will aid in interrupting, treating, and managing the
risks associated with these agents and the diseases they cause.
Funding Agency Agency National Institute of Health (NIH)
Institute National Institute of Neurological Disorders and Stroke (NINDS)
Type Research Project (R01)
Project # 4R01NS061902-07
Application # 9010980
Study Section Cellular and Molecular Biology of Neurodegeneration Study
Section (CMND)
Program Officer Wong, May Project Start 2009-09-30
Project End 2018-02-28
Budget Start 2016-03-01
Budget End 2017-02-28
Support Year 7
Fiscal Year 2016
Total Cost $409,868
Indirect Cost $134,234 Institution Name Colorado State University-Fort
Collins
Department Microbiology/Immun/Virology
Type Schools of Veterinary Medicine
DUNS # 785979618 City Fort Collins
State CO
Country United States
Zip Code 80523
LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL
THE WRONG PLACES $$$
*** These results would seem to suggest that CWD does indeed have zoonotic
potential, at least as judged by the compatibility of CWD prions and their human
PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests
that if zoonotic CWD occurred, it would most likely effect those of the PRNP
codon 129-MM genotype and that the PrPres type would be similar to that found in
the most common subtype of sCJD (MM1).***
PRION 2015 CONFERENCE FT. COLLINS CWD RISK FACTORS TO HUMANS
*** LATE-BREAKING ABSTRACTS PRION 2015 CONFERENCE ***
O18
Zoonotic Potential of CWD Prions
Liuting Qing1, Ignazio Cali1,2, Jue Yuan1, Shenghai Huang3, Diane Kofskey1,
Pierluigi Gambetti1, Wenquan Zou1, Qingzhong Kong1 1Case Western Reserve
University, Cleveland, Ohio, USA, 2Second University of Naples, Naples, Italy,
3Encore Health Resources, Houston, Texas, USA
*** These results indicate that the CWD prion has the potential to infect
human CNS and peripheral lymphoid tissues and that there might be asymptomatic
human carriers of CWD infection.
==================
***These results indicate that the CWD prion has the potential to infect
human CNS and peripheral lymphoid tissues and that there might be asymptomatic
human carriers of CWD infection.***
==================
P.105: RT-QuIC models trans-species prion transmission
Kristen Davenport, Davin Henderson, Candace Mathiason, and Edward Hoover
Prion Research Center; Colorado State University; Fort Collins, CO USA
Conversely, FSE maintained sufficient BSE characteristics to more
efficiently convert bovine rPrP than feline rPrP. Additionally, human rPrP was
competent for conversion by CWD and fCWD.
***This insinuates that, at the level of protein:protein interactions, the
barrier preventing transmission of CWD to humans is less robust than previously
estimated.
================
***This insinuates that, at the level of protein:protein interactions, the
barrier preventing transmission of CWD to humans is less robust than previously
estimated.***
================
*** PRICE OF CWD TSE PRION POKER GOES UP 2014 ***
Transmissible Spongiform Encephalopathy TSE PRION update January 2, 2014
*** chronic wasting disease, there was no absolute barrier to conversion of
the human prion protein.
*** Furthermore, the form of human PrPres produced in this in vitro assay
when seeded with CWD, resembles that found in the most common human prion
disease, namely sCJD of the MM1 subtype.
*** These results would seem to suggest that CWD does indeed have zoonotic
potential, at least as judged by the compatibility of CWD prions and their human
PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests
that if zoonotic CWD occurred, it would most likely effect those of the PRNP
codon 129-MM genotype and that the PrPres type would be similar to that found in
the most common subtype of sCJD (MM1).***
*** The potential impact of prion diseases on human health was greatly
magnified by the recognition that interspecies transfer of BSE to humans by beef
ingestion resulted in vCJD. While changes in animal feed constituents and
slaughter practices appear to have curtailed vCJD, there is concern that CWD of
free-ranging deer and elk in the U.S. might also cross the species barrier.
Thus, consuming venison could be a source of human prion disease. Whether BSE
and CWD represent interspecies scrapie transfer or are newly arisen prion
diseases is unknown. Therefore, the possibility of transmission of prion disease
through other food animals cannot be ruled out. There is evidence that vCJD can
be transmitted through blood transfusion. There is likely a pool of unknown size
of asymptomatic individuals infected with vCJD, and there may be asymptomatic
individuals infected with the CWD equivalent. These circumstances represent a
potential threat to blood, blood products, and plasma supplies.
***********CJD REPORT 1994 increased risk for consumption of veal and
venison and lamb***********
CREUTZFELDT JAKOB DISEASE SURVEILLANCE IN THE UNITED KINGDOM THIRD ANNUAL
REPORT AUGUST 1994
Consumption of venison and veal was much less widespread among both cases
and controls. For both of these meats there was evidence of a trend with
increasing frequency of consumption being associated with increasing risk of
CJD. (not nvCJD, but sporadic CJD...tss)
These associations were largely unchanged when attention was restricted to
pairs with data obtained from relatives. ...
Table 9 presents the results of an analysis of these data.
There is STRONG evidence of an association between ‘’regular’’ veal eating
and risk of CJD (p = .0.01).
Individuals reported to eat veal on average at least once a year appear to
be at 13 TIMES THE RISK of individuals who have never eaten veal.
There is, however, a very wide confidence interval around this estimate.
There is no strong evidence that eating veal less than once per year is
associated with increased risk of CJD (p = 0.51).
The association between venison eating and risk of CJD shows similar
pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK
OF CJD (p = 0.04).
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY
OF LAMB EATING (p = 0.02).
The evidence for such an association between beef eating and CJD is weaker
(p = 0.14). When only controls for whom a relative was interviewed are included,
this evidence becomes a little STRONGER (p = 0.08).
snip...
It was found that when veal was included in the model with another
exposure, the association between veal and CJD remained statistically
significant (p = < 0.05 for all exposures), while the other exposures ceased
to be statistically significant (p = > 0.05).
snip...
In conclusion, an analysis of dietary histories revealed statistical
associations between various meats/animal products and INCREASED RISK OF CJD.
When some account was taken of possible confounding, the association between
VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS
STATISTICALLY. ...
snip...
In the study in the USA, a range of foodstuffs were associated with an
increased risk of CJD, including liver consumption which was associated with an
apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3
studies in relation to this particular dietary factor, the risk of liver
consumption became non-significant with an odds ratio of 1.2 (PERSONAL
COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)
snip...see full report ;
CJD9/10022
October 1994
Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge
Spencers Lane BerksWell Coventry CV7 7BZ
Dear Mr Elmhirst,
CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT
Thank you for your recent letter concerning the publication of the third
annual report from the CJD Surveillance Unit. I am sorry that you are
dissatisfied with the way in which this report was published.
The Surveillance Unit is a completely independant outside body and the
Department of Health is committed to publishing their reports as soon as they
become available. In the circumstances it is not the practice to circulate the
report for comment since the findings of the report would not be amended. In
future we can ensure that the British Deer Farmers Association receives a copy
of the report in advance of publication.
The Chief Medical Officer has undertaken to keep the public fully informed
of the results of any research in respect of CJD. This report was entirely the
work of the unit and was produced completely independantly of the the
Department.
The statistical results reqarding the consumption of venison was put into
perspective in the body of the report and was not mentioned at all in the press
release. Media attention regarding this report was low key but gave a realistic
presentation of the statistical findings of the Unit. This approach to
publication was successful in that consumption of venison was highlighted only
once by the media ie. in the News at one television proqramme.
I believe that a further statement about the report, or indeed statistical
links between CJD and consumption of venison, would increase, and quite possibly
give damaging credence, to the whole issue. From the low key media reports of
which I am aware it seems unlikely that venison consumption will suffer
adversely, if at all.
http://web.archive.org/web/20030511010117/http://www.bseinquiry.gov.uk/files/yb/1994/10/00003001.pdf
Monday, May 02, 2016
*** Zoonotic Potential of CWD Prions: An Update Prion 2016 Tokyo ***
*** PRION 2014 CONFERENCE CHRONIC WASTING DISEASE CWD
*** PPo3-7: Prion Transmission from Cervids to Humans is Strain-dependent
*** Here we report that a human prion strain that had adopted the cervid
prion protein (PrP) sequence through passage in cervidized transgenic mice
efficiently infected transgenic mice expressing human PrP,
*** indicating that the species barrier from cervid to humans is prion
strain-dependent and humans can be vulnerable to novel cervid prion strains.
PPo2-27:
Generation of a Novel form of Human PrPSc by Inter-species Transmission of
Cervid Prions
*** Our findings suggest that CWD prions have the capability to infect
humans, and that this ability depends on CWD strain adaptation, implying that
the risk for human health progressively increases with the spread of CWD among
cervids.
PPo2-7:
Biochemical and Biophysical Characterization of Different CWD Isolates
*** The data presented here substantiate and expand previous reports on the
existence of different CWD strains.
Envt.07:
Pathological Prion Protein (PrPTSE) in Skeletal Muscles of Farmed and Free
Ranging White-Tailed Deer Infected with Chronic Wasting Disease
***The presence and seeding activity of PrPTSE in skeletal muscle from
CWD-infected cervids suggests prevention of such tissue in the human diet as a
precautionary measure for food safety, pending on further clarification of
whether CWD may be transmissible to humans.
>>>CHRONIC WASTING DISEASE , THERE WAS NO ABSOLUTE BARRIER TO
CONVERSION OF THE HUMAN PRION PROTEIN<<<
*** PRICE OF CWD TSE PRION POKER GOES UP 2014 ***
Transmissible Spongiform Encephalopathy TSE PRION update January 2, 2014
Wednesday, January 01, 2014
Molecular Barriers to Zoonotic Transmission of Prions
*** chronic wasting disease, there was no absolute barrier to conversion of
the human prion protein.
*** Furthermore, the form of human PrPres produced in this in vitro assay
when seeded with CWD, resembles that found in the most common human prion
disease, namely sCJD of the MM1 subtype.
Envt.07:
Pathological Prion Protein (PrPTSE) in Skeletal Muscles of Farmed and Free
Ranging White-Tailed Deer Infected with Chronic Wasting Disease
***The presence and seeding activity of PrPTSE in skeletal muscle from
CWD-infected cervids suggests prevention of such tissue in the human diet as a
precautionary measure for food safety, pending on further clarification of
whether CWD may be transmissible to humans.
Yet, it has to be noted that our assessments of PrPTSE levels in skeletal
muscles were based on findings in presumably pre- or subclinically infected
animals. Therefore, the concentration of PrPTSE in skeletal muscles of WTD with
clinically manifest CWD may possibly exceed our estimate which refers to
clinically inconspicuous animals that are more likely to enter the human food
chain. Our tissue blot findings in skeletal muscles from CWD-infected WTD would
be consistent with an anterograde spread of CWD prions via motor nerve fibres to
muscle tissue (figure 4A). Similar neural spreading pathways of muscle infection
were previously found in hamsters orally challenged with scrapie [28] and
suggested by the detection of PrPTSE in muscle fibres and muscle-associated
nerve fascicles of clinically-ill non-human primates challenged with BSE prions
[29]. Whether the absence of detectable PrPTSE in myofibers observed in our
study is a specific feature of CWD in WTD, or was due to a pre- or subclinical
stage of infection in the examined animals, remains to be established. In any
case, our observations support previous findings suggesting the precautionary
prevention of muscle tissue from CWD-infected WTD in the human diet, and
highlight the need to comprehensively elucidate of whether CWD may be
transmissible to humans. While the understanding of TSEs in cervids has made
substantial progress during the past few years, the assessment and management of
risks possibly emanating from prions in skeletal muscles of CWD-infected cervids
requires further research.
Prions in Skeletal Muscles of Deer with Chronic Wasting Disease Rachel C.
Angers1,*, Shawn R. Browning1,*,†, Tanya S. Seward2, Christina J. Sigurdson4,‡,
Michael W. Miller5, Edward A. Hoover4, Glenn C. Telling1,2,3,§ + Author
Affiliations
1 Department of Microbiology, Immunology and Molecular Genetics, University
of Kentucky, Lexington, KY 40536, USA. 2 Sanders Brown Center on Aging,
University of Kentucky, Lexington, KY 40536, USA. 3 Department of Neurology,
University of Kentucky, Lexington, KY 40536, USA. 4 Department of Microbiology,
Immunology and Pathology, Colorado State University, Fort Collins, CO 80523,
USA. 5 Colorado Division of Wildlife, Wildlife Research Center, Fort Collins, CO
80526, USA. ↵§ To whom correspondence should be addressed. E-mail:
gtell2@uky.edu ↵* These authors contributed equally to this work.
↵† Present address: Department of Infectology, Scripps Research Institute,
5353 Parkside Drive, RF-2, Jupiter, FL 33458, USA.
↵‡ Present address: Institute of Neuropathology, University of Zurich,
Schmelzbergstrasse 12, 8091 Zurich, Switzerland.
Abstract The emergence of chronic wasting disease (CWD) in deer and elk in
an increasingly wide geographic area, as well as the interspecies transmission
of bovine spongiform encephalopathy to humans in the form of variant Creutzfeldt
Jakob disease, have raised concerns about the zoonotic potential of CWD. Because
meat consumption is the most likely means of exposure, it is important to
determine whether skeletal muscle of diseased cervids contains prion
infectivity. Here bioassays in transgenic mice expressing cervid prion protein
revealed the presence of infectious prions in skeletal muscles of CWD-infected
deer, demonstrating that humans consuming or handling meat from CWD-infected
deer are at risk to prion exposure.
Exotic Meats USA Announces Urgent Statewide Recall of Elk Tenderloin
Because It May Contain Meat Derived From An Elk Confirmed To Have Chronic
Wasting Disease
Contact: Exotic Meats USA 1-800-680-4375
FOR IMMEDIATE RELEASE -- February 9, 2009 -- Exotic Meats USA of San
Antonio, TX is initiating a voluntary recall of Elk Tenderloin because it may
contain meat derived from an elk confirmed to have Chronic Wasting Disease
(CWD). The meat with production dates of December 29, 30 and 31, 2008 was
purchased from Sierra Meat Company in Reno, NV. The infected elk came from Elk
Farm LLC in Pine Island, MN and was among animals slaughtered and processed at
USDA facility Noah’s Ark Processors LLC.
Chronic Wasting Disease (CWD) is a fatal brain and nervous system disease
found in elk and deer. The disease is caused by an abnormally shaped protein
called a prion, which can damage the brain and nerves of animals in the deer
family. Currently, it is believed that the prion responsible for causing CWD in
deer and elk is not capable of infecting humans who eat deer or elk contaminated
with the prion, but the observation of animal-to-human transmission of other
prion-mediated diseases, such as bovine spongiform encephalopathy (BSE), has
raised a theoretical concern regarding the transmission of CWD from deer or elk
to humans. At the present time, FDA believes the risk of becoming ill from
eating CWD-positive elk or deer meat is remote. However, FDA strongly advises
consumers to return the product to the place of purchase, rather than disposing
of it themselves, due to environmental concerns.
Exotic Meats USA purchased 1 case of Elk Tenderloins weighing 16.9 lbs. The
Elk Tenderloin was sold from January 16 – 27, 2009. The Elk Tenderloins was
packaged in individual vacuum packs weighing approximately 3 pounds each. A
total of six packs of the Elk Tenderloins were sold to the public at the Exotic
Meats USA retail store. Consumers who still have the Elk Tenderloins should
return the product to Exotic Meats USA at 1003 NE Loop 410, San Antonio, TX
78209. Customers with concerns or questions about the Voluntary Elk Recall can
call 1-800-680-4375. The safety of our customer has always been and always will
be our number one priority.
Exotic Meats USA requests that for those customers who have products with
the production dates in question, do not consume or sell them and return them to
the point of purchase. Customers should return the product to the vendor. The
vendor should return it to the distributor and the distributor should work with
the state to decide upon how best to dispose. If the consumer is disposing of
the product he/she should consult with the local state EPA office.
#
COLORADO: Farmer's market meat recalled after testing positive for CWD
24.dec.08 9News.com Jeffrey Wolf
Elk meat that was sold at a farmer's market is being recalled because tests
show it was infected with chronic wasting disease. The Boulder County Health
Department and Colorado Department of Public Health and Environment issued the
recall Wednesday after the meat was sold at the Boulder County Fairgrounds on
Dec. 13. Although there isn't any human health risk connected with CWD, the
recalled was issued as a precaution. About 15 elk were bought from a commercial
ranch in Colorado in early December and processed at a licensed plant. All 15
were tested for CWD and one came up positive. The labeling on the product would
have the following information: *Seller: High Wire Ranch *The type of cut:
"chuck roast," "arm roast," "flat iron," "ribeye steak," "New York steak,"
"tenderloin," "sirloin tip roast," "medallions" or "ground meat." *Processor:
Cedaredge Processing *The USDA triangle containing the number "34645" People
with questions about this meat can contact John Pape, epidemiologist at the
Colorado Department of Public Health and Environment at 303-692-2628.
COULD NOT FIND any warning or recalls on these two sites confirming their
recall of CWD infected meat. ...TSS
Wednesday, April 06, 2011
Presence and Seeding Activity of Pathological Prion Protein (PrPTSE) in
Skeletal Muscles of White-Tailed Deer Infected with Chronic Wasting Disease
Prion Infectivity in Fat of Deer with Chronic Wasting Disease
Brent Race,# Kimberly Meade-White,# Richard Race, and Bruce Chesebro* Rocky
Mountain Laboratories, 903 South 4th Street, Hamilton, Montana 59840
Received 2 June 2009/ Accepted 24 June 2009
ABSTRACT Top ABSTRACT TEXT REFERENCES
Chronic wasting disease (CWD) is a neurodegenerative prion disease of
cervids. Some animal prion diseases, such as bovine spongiform encephalopathy,
can infect humans; however, human susceptibility to CWD is unknown. In
ruminants, prion infectivity is found in central nervous system and lymphoid
tissues, with smaller amounts in intestine and muscle. In mice, prion
infectivity was recently detected in fat. Since ruminant fat is consumed by
humans and fed to animals, we determined infectivity titers in fat from two
CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD
infectivity and might be a risk factor for prion infection of other species.
snip...
The highest risk of human contact with CWD might be through exposure to
high-titer CNS tissue through accidental skin cuts or corneal contact at the
time of harvest and butchering. However, the likelihood of a human consuming fat
infected with a low titer of the CWD agent is much higher. It is impossible to
remove all the fat present within muscle tissue, and fat consumption is
inevitable when eating meat. Of additional concern is the fact that meat from an
individual deer harvested by a hunter is typically consumed over multiple meals
by the same group of people. These individuals would thus have multiple
exposures to the CWD agent over time, which might increase the chance for
transfer of infection.
In the Rocky Mountain region of North America, wild deer are subject to
predation by wolves, coyotes, bears, and mountain lions. Although canines such
as wolves and coyotes are not known to be susceptible to prion diseases, felines
definitely are susceptible to BSE (9) and might also be infected by the CWD
agent. Deer infected with the CWD agent are more likely to be killed by
predators such as mountain lions (11). Peripheral tissues, including lymph
nodes, muscle, and fat, which harbor prion infectivity are more accessible for
consumption than CNS tissue, which has the highest level of infectivity late in
disease. Therefore, infectivity in these peripheral tissues may be important in
potential cross-species CWD transmissions in the wild.
The present finding of CWD infectivity in deer fat tissue raises the
possibility that prion infectivity might also be found in fat tissue of other
infected ruminants, such as sheep and cattle, whose fat and muscle tissues are
more widely distributed in both the human and domestic-animal food chains.
Although the infectivity in fat tissues is low compared to that in the CNS,
there may be significant differences among species and between prion strains.
Two fat samples from BSE agent-infected cattle were reported to be negative by
bioassay in nontransgenic RIII mice (3, 6). However, RIII mice are
10,000-fold-less sensitive to BSE agent infection than transgenic mice
expressing bovine PrP (4). It would be prudent to carry out additional
infectivity assays on fat from BSE agent-infected cattle and scrapie
agent-infected sheep using appropriate transgenic mice or homologous species to
determine the risk from these sources.
0C7.04
North American Cervids Harbor Two Distinct CWD Strains
Authors
Angers, R. Seward, T, Napier, D., Browning, S., Miller, M., Balachandran
A., McKenzie, D., Hoover, E., Telling, G. 'University of Kentucky; Colorado
Division of Wildlife, Canadian Food Inspection Agency; University Of Wisconsin;
Colorado State University.
Content
Despite the increasing geographic distribution and host range of CWD,
little is known about the prion strain(s) responsible for distinct outbreaks of
the disease. To address this we inoculated CWD-susceptible Tg(CerPrP)1536+/·
mice with 29 individual prion samples from various geographic locations in North
America. Upon serial passage, intrastudy incubation periods consistently
diverged and clustered into two main groups with means around 210 and 290 days,
with corresponding differences in neuropathology. Prion strain designations were
utilized to distinguish between the two groups: Type I CWD mice succumbed to
disease in the 200 day range and displayed a symmetrical pattern of vacuolation
and PrPSc deposition, whereas Type II CWD mice succumbed to disease near 300
days and displayed a strikingly different pattern characterized by large local
accumulations of florid plaques distributed asymmetrically. Type II CWD bears a
striking resemblance to unstable parental scrapie strains such as 87A which give
rise to stable, short incubation period strains such as ME7 under certain
passage conditions. In agreement, the only groups of CWD-inoculated mice with
unwavering incubation periods were those with Type I CWD. Additionally,
following endpoint titration of a CWD sample, Type I CWD could be recovered only
at the lowest dilution tested (10-1), whereas Type II CWD was detected in mice
inoculated with all dilutions resulting in disease. Although strain properties
are believed to be encoded in the tertiary structure of the infectious prion
protein, we found no biochemical differences between Type I and Type II CWD. Our
data confirm the co·existence of two distinct prion strains in CWD-infected
cervids and suggest that Type II CWD is the parent strain of Type I CWD.
see page 29, and see other CWD studies ;
Sunday, November 23, 2008
PRION October 8th - 10th 2008 Book of Abstracts
ADAPTATION OF CHRONIC WASTING DISEASE (CWD) INTO HAMSTERS, EVIDENCE OF A
WISCONSIN STRAIN OF CWD
Chad Johnson1, Judd Aiken2,3,4 and Debbie McKenzie4,5 1 Department of
Comparative Biosciences, University of Wisconsin, Madison WI, USA 53706 2
Department of Agriculture, Food and Nutritional Sciences, 3 Alberta Veterinary
Research Institute, 4.Center for Prions and Protein Folding Diseases, 5
Department of Biological Sciences, University of Alberta, Edmonton AB, Canada
T6G 2P5
The identification and characterization of prion strains is increasingly
important for the diagnosis and biological definition of these infectious
pathogens. Although well-established in scrapie and, more recently, in BSE,
comparatively little is known about the possibility of prion strains in chronic
wasting disease (CWD), a disease affecting free ranging and captive cervids,
primarily in North America. We have identified prion protein variants in the
white-tailed deer population and demonstrated that Prnp genotype affects the
susceptibility/disease progression of white-tailed deer to CWD agent. The
existence of cervid prion protein variants raises the likelihood of distinct CWD
strains. Small rodent models are a useful means of identifying prion strains. We
intracerebrally inoculated hamsters with brain homogenates and phosphotungstate
concentrated preparations from CWD positive hunter-harvested (Wisconsin CWD
endemic area) and experimentally infected deer of known Prnp genotypes. These
transmission studies resulted in clinical presentation in primary passage of
concentrated CWD prions. Subclinical infection was established with the other
primary passages based on the detection of PrPCWD in the brains of hamsters and
the successful disease transmission upon second passage. Second and third
passage data, when compared to transmission studies using different CWD inocula
(Raymond et al., 2007) indicate that the CWD agent present in the Wisconsin
white-tailed deer population is different than the strain(s) present in elk,
mule-deer and white-tailed deer from the western United States endemic region.
Tuesday, December 16, 2014
Evidence for zoonotic potential of ovine scrapie prions
Hervé Cassard,1, n1 Juan-Maria Torres,2, n1 Caroline Lacroux,1, Jean-Yves
Douet,1, Sylvie L. Benestad,3, Frédéric Lantier,4, Séverine Lugan,1, Isabelle
Lantier,4, Pierrette Costes,1, Naima Aron,1, Fabienne Reine,5, Laetitia
Herzog,5, Juan-Carlos Espinosa,2, Vincent Beringue5, & Olivier Andréoletti1,
Affiliations Contributions Corresponding author Journal name: Nature
Communications Volume: 5, Article number: 5821 DOI: doi:10.1038/ncomms6821
Received 07 August 2014 Accepted 10 November 2014 Published 16 December 2014
Article tools Citation Reprints Rights & permissions Article metrics
Abstract
Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant
Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie
prions remains unknown. Mice genetically engineered to overexpress the human
prion protein (tgHu) have emerged as highly relevant models for gauging the
capacity of prions to transmit to humans. These models can propagate human
prions without any apparent transmission barrier and have been used used to
confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie
prions transmit to several tgHu mice models with an efficiency comparable to
that of cattle BSE. The serial transmission of different scrapie isolates in
these mice led to the propagation of prions that are phenotypically identical to
those causing sporadic CJD (sCJD) in humans. These results demonstrate that
scrapie prions have a zoonotic potential and raise new questions about the
possible link between animal and human prions.
Subject terms: Biological sciences• Medical research At a glance
*** In complement to the recent demonstration that humanized mice are
susceptible to scrapie, we report here the first observation of direct
transmission of a natural classical scrapie isolate to a macaque after a 10-year
incubation period. Neuropathologic examination revealed all of the features of a
prion disease: spongiform change, neuronal loss, and accumulation of PrPres
throughout the CNS.
*** This observation strengthens the questioning of the harmlessness of
scrapie to humans, at a time when protective measures for human and animal
health are being dismantled and reduced as c-BSE is considered controlled and
being eradicated.
*** Our results underscore the importance of precautionary and protective
measures and the necessity for long-term experimental transmission studies to
assess the zoonotic potential of other animal prion strains.
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online
Taylor & Francis
Prion 2016 Animal Prion Disease Workshop Abstracts
WS-01: Prion diseases in animals and zoonotic potential
Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a.
Vincent Beringue c. Patricia Aguilar a,
Natalia Fernandez-Borges a. and Alba Marin-Moreno a
"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos,
Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT.
Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas.
France
Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated
bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD)
disease in human. To date, BSE agent is the only recognized zoonotic prion.
Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that
have been circulating for centuries in farmed ruminants there is no apparent
epidemiological link between exposure to ruminant products and the occurrence of
other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD).
However, the zoonotic potential of the diversity of circulating TSE agents has
never been systematically assessed. The major issue in experimental assessment
of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the
biological phenomenon that limits TSE agents’ propagation from a species to
another. In the last decade, mice genetically engineered to express normal forms
of the human prion protein has proved essential in studying human prions
pathogenesis and modeling the capacity of TSEs to cross the human species
barrier.
To assess the zoonotic potential of prions circulating in farmed ruminants,
we study their transmission ability in transgenic mice expressing human PrPC
(HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC
(129Met or 129Val) are used to determine the role of the Met129Val dimorphism in
susceptibility/resistance to the different agents.
These transmission experiments confirm the ability of BSE prions to
propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be
susceptible to BSE in sheep or goat to a greater degree than the BSE agent in
cattle and that these agents can convey molecular properties and
neuropathological indistinguishable from vCJD. However homozygous 129V mice are
resistant to all tested BSE derived prions independently of the originating
species suggesting a higher transmission barrier for 129V-PrP variant.
Transmission data also revealed that several scrapie prions propagate in
HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the
efficiency of transmission at primary passage was low, subsequent passages
resulted in a highly virulent prion disease in both Met129 and Val129 mice.
Transmission of the different scrapie isolates in these mice leads to the
emergence of prion strain phenotypes that showed similar characteristics to
those displayed by MM1 or VV2 sCJD prion. These results demonstrate that scrapie
prions have a zoonotic potential and raise new questions about the possible link
between animal and human prions.
why do we not want to do TSE transmission studies on chimpanzees $
5. A positive result from a chimpanzee challenged severly would likely
create alarm in some circles even if the result could not be interpreted for
man. I have a view that all these agents could be transmitted provided a large
enough dose by appropriate routes was given and the animals kept long enough.
Until the mechanisms of the species barrier are more clearly understood it might
be best to retain that hypothesis.
snip...
R. BRADLEY
1978 SCRAPIE IN CONFIDENCE SCJD
1979
SILENCE ON CJD AND SCRAPIE
1980
SILENCE ON CJD AND SCRAPIE
*** 1981 NOVEMBER
Thursday, August 04, 2016
*** MEETING ON THE FEASIBILITY OF CARRYING OUT EPIDEMIOLOGICAL STUDIES ON
CREUTZFELDT JAKOB DISEASE 1978 THE SCRAPIE FILES IN CONFIDENCE CONFIDENTIAL SCJD
2016
SCRAPIE AND CWD ZOONOSIS
PRION 2016 CONFERENCE TOKYO
Saturday, April 23, 2016
*** SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016
***
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X
Transmission of scrapie prions to primate after an extended silent
incubation period
***Moreover, sporadic disease has never been observed in breeding colonies
or primate research laboratories, most notably among hundreds of animals over
several decades of study at the National Institutes of Health25, and in nearly
twenty older animals continuously housed in our own facility.***
Transmission of scrapie prions to primate after an extended silent
incubation period
Emmanuel E. Comoy , Jacqueline Mikol , Sophie Luccantoni-Freire , Evelyne
Correia , Nathalie Lescoutra-Etchegaray , Valérie Durand , Capucine Dehen ,
Olivier Andreoletti , Cristina Casalone , Juergen A. Richt , Justin J. Greenlee
, Thierry Baron , Sylvie L. Benestad , Paul Brown & Jean-Philippe Deslys
Abstract
Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion
disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD)
in humans and having guided protective measures for animal and human health
against animal prion diseases. Recently, partial transmissions to humanized mice
showed that the zoonotic potential of scrapie might be similar to c-BSE. We here
report the direct transmission of a natural classical scrapie isolate to
cynomolgus macaque, a highly relevant model for human prion diseases, after a
10-year silent incubation period, with features similar to those reported for
human cases of sporadic CJD. Scrapie is thus actually transmissible to primates
with incubation periods compatible with their life expectancy, although fourfold
longer than BSE. Long-term experimental transmission studies are necessary to
better assess the zoonotic potential of other prion diseases with high
prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98
scrapie.
snip...
In addition to previous studies on scrapie transmission to primate1,8,9 and
the recently published study on transgenic humanized mice13, our results
constitute new evidence for recommending that the potential risk of scrapie for
human health should not be dismissed. Indeed, human PrP transgenic mice and
primates are the most relevant models for investigating the human transmission
barrier. To what extent such models are informative for measuring the zoonotic
potential of an animal TSE under field exposure conditions is unknown. During
the past decades, many protective measures have been successfully implemented to
protect cattle from the spread of c-BSE, and some of these measures have been
extended to sheep and goats to protect from scrapie according to the principle
of precaution. Since cases of c-BSE have greatly reduced in number, those
protective measures are currently being challenged and relaxed in the absence of
other known zoonotic animal prion disease. We recommend that risk managers
should be aware of the long term potential risk to human health of at least
certain scrapie isolates, notably for lymphotropic strains like the classical
scrapie strain used in the current study. Relatively high amounts of infectivity
in peripheral lymphoid organs in animals infected with these strains could lead
to contamination of food products produced for human consumption. Efforts should
also be maintained to further assess the zoonotic potential of other animal
prion strains in long-term studies, notably lymphotropic strains with high
prevalence like CWD, which is spreading across North America, and atypical/Nor98
scrapie (Nor98)50 that was first detected in the past two decades and now
represents approximately half of all reported cases of prion diseases in small
ruminants worldwide, including territories previously considered as scrapie
free. Even if the prevailing view is that sporadic CJD is due to the spontaneous
formation of CJD prions, it remains possible that its apparent sporadic nature
may, at least in part, result from our limited capacity to identify an
environmental origin.
***Moreover, sporadic disease has never been observed in breeding colonies
or primate research laboratories, most notably among hundreds of animals over
several decades of study at the National Institutes of Health25, and in nearly
twenty older animals continuously housed in our own facility.***
2015
O.05: Transmission of prions to primates after extended silent incubation
periods: Implications for BSE and scrapie risk assessment in human populations
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni,
Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys
Atomic Energy Commission; Fontenay-aux-Roses, France
Prion diseases (PD) are the unique neurodegenerative proteinopathies
reputed to be transmissible under field conditions since decades. The
transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that
an animal PD might be zoonotic under appropriate conditions. Contrarily, in the
absence of obvious (epidemiological or experimental) elements supporting a
transmission or genetic predispositions, PD, like the other proteinopathies, are
reputed to occur spontaneously (atpical animal prion strains, sporadic CJD
summing 80% of human prion cases). Non-human primate models provided the first
evidences supporting the transmissibiity of human prion strains and the zoonotic
potential of BSE. Among them, cynomolgus macaques brought major information for
BSE risk assessment for human health (Chen, 2014), according to their
phylogenetic proximity to humans and extended lifetime. We used this model to
assess the zoonotic potential of other animal PD from bovine, ovine and cervid
origins even after very long silent incubation periods.
*** We recently observed the direct transmission of a natural classical
scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD,
albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked
in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases. We will present an
updated panorama of our different transmission studies and discuss the
implications of such extended incubation periods on risk assessment of animal PD
for human health.
===============
***thus questioning the origin of human sporadic cases***
===============
***our findings suggest that possible transmission risk of H-type BSE to
sheep and human. Bioassay will be required to determine whether the PMCA
products are infectious to these animals.
==============