Sunday, September 25, 2011

Clinical Heidenhain Variant Of Sporadic Creutzfeldt-Jakob Disease (CJD) With Co-occurrence Of Prion Protein Types 1 and 2

Poster 52

Clinical Heidenhain Variant Of Sporadic Creutzfeldt-Jakob Disease (CJD) With Co-occurrence Of Prion Protein Types 1 and 2

Adeela Alizai1, Gianfranco Puoti2, Pierluigi Gambetti2, Ignazio Cali21Temple University Hospital, Philadelphia, PA, United States, 2Case Western University, Cleveland, OH, United States

Background:

Sporadic Creutzfeldt-Jacob disease (sCJD) is a rare neurodegenerative illness comprising five phenotypically distinct subtypes based on the methionine(M)/valine(V) polymorphism at codon 129 of the prion protein (PrP) gene and presence of either one of the two protease-resistant PrP (PrPres), referred to as PrPres type 1 and type 2.1, 2 The most common of these five subtypes includes the sCJDMM(MV)1 that matches the .classic. sCJD and comprises the so-called Heidenhain variant (HsCJD) characterized by early and prominent visual symptoms. Recently, an additional subtype of sCJD has been described and identified as sCJDMM1-2 in which both types 1 and 2 histopathological changes are found in the same brain.3 The clinical Heidenhain phenotype in association with histopathological sCJDMM1-2 subtype has not been described.

Methods:

Clinical, neuroimaging, EEG findings, histopathological and immunostaining as well as PrPres characterization of 20 cases of sCJDMM1-2 were reviewed.

Results:

Two cases (10%) of HsCJD with ages at onset of 51 and 66 years and disease durations of 4 and 12 months were identified. Immunohistopathology and PrPres type determination were consistent with the features of the sCJDMM1-2 subtype.3 The visual cortex was more severely affected than the frontal cortex and was found to carry both PrPres types.4 The study of the quantitative distribution of PrPres types, expressed as mean percentage of total PrPres types 1 and 2 (1:2), was 79%:21% for the sCJDMM1-2 with 4 month and 45%:55% for the case with 12 months disease duration respectively. The cerebellum showed both PrPres types and PrP immunohistochemical patterns of the sCJDMM1-2.

Conclusion:

To our knowledge, this is the first histopathological finding of sCJDMM1-2 in Heidenhain variant of sporadic CJD. Also, the amount of PrPres type 2 and to a lesser extent that of the MM2-like immunohistochemical features increase with the disease duration, as seen for the sCJDMM1-2.

References:

1. Parchi P, Giese A, Capellari S et al. Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 1999; 46: 224-233.

2. Gambetti P, Kong Q, Zou W, Parchi P, Chen SG. Sporadic and familial CJD: classification and characterization. Br Med Bull 2003; 66: 213.39.

3. Cali I, Castellani R, Alshekhlee A et al. Co-existence of scrapie prion protein types 1 and 2 in sporadic Creutzfeldt.Jakob disease: its effect on the phenotype and prion-type characteristics. Brain. 2009 Sep 4. [Epub ahead of print]

4. Kropp S, Schulz-Schaeffer WJ, Finkenstaedt M, Riedemann C, Windl O, Steinhoff BJ, Zerr I, Kretzschmar HA, Poser S. The Heidenhain variant of Creutzfeldt-Jakob disease. Arch Neurol. 1999 Jan; 56(1):55-61.

Key Words: Heidenhain variant of sporadic CJD disease duration, co-existence of Prion proteins types 1 and 2, disease duration

Financial Disclosure: NONE

http://content.lib.utah.edu/cgi-bin/showfile.exe?CISOROOT=/ehsl-nam&CISOPTR=229&filename=230.pdf


88


Heidenhain Variant of Sporadic Creutzfeldt-Jakob Disease With the Co-Occurrence of Two Different Types of Prion Protein

Ignazio Cali1, Gianfranco Puoti1, Janis Blevins1, Adeela Alizai2, Pierluigi Gambetti1. 1Case Western Reserve University; 2Temple University Hospital

Sporadic Creutzfeldt-Jacob disease (sCJD) is a rare neurodegenerative disorder classified into five distinct phenotypes based on i) the polymorphic methionine (M)/valine (V) genotype at codon 129, and ii) detection of either type 1 or type 2 of the protease-resistant prion protein (PrPres) (Parchi et al., Ann Neurol 1999; Gambetti et al., Br Med Bull 2003). Sporadic CJDMM1, the most common CJD subtype, is the only CJD subtype that includes the Heidenhain variant (HsCJD), a condition characterized by early and prominent visual deficits associated with the preferential involvement of the occipital cortex (Kropp et al., Arch Neurol 1999). The histopathological phenotype of HsCJD is indistinguishable from that of sCJDMM1. Recently, we described a group of sCJD cases identified as sCJDMM1-2 in which both PrPres types were found to co-exist in the same brain (Cali et al., Brain 2009). In the present study, we investigated whether the Heidenhain clinical phenotype is present in sCJDMM1-2. To date, the screening of clinical histories from 59 sCJDMM1-2 patients that were received at the National Prion Disease Pathology Surveillance Center between 1998 and 2009 has led to the identification of 8 (14%) HsCJDMM1-2 subjects. The detailed study of two HsCJDMM1-2 cases shows that the immunohistopathological features as well as PrPres type determined in different brain locations are consistent with the features of the sCJDMM1-2 subtype (Cali et al., Brain 2009). The visual cortex is severely affected in both cases and is found to carry both PrPres types (Kropp et al., Arch Neurol 1999). To our knowledge, this is the first finding of HsCJD in sCJDMM1-2 and indicates that the presence of even relatively large amounts of PrPres type 2 does not impede the expression of HsCJD.

(Supported by, NIH AG-14359, CDC UR8/CCU515004 and Charles S. Britton Foundation; the CDC Foundation).

http://journals.lww.com/jneuropath/Fulltext/2010/05000/American_Association_of_Neuropathologists,_Inc__.9.aspx



Friday, August 20, 2010

Heidenhain Variant of Sporadic Creutzfeldt-Jakob Disease With the Co-Occurrence of Two Different Types of Prion Protein

http://creutzfeldt-jakob-disease.blogspot.com/2010/08/heidenhain-variant-of-sporadic.html



Tuesday, July 29, 2008

Heidenhain Variant Creutzfeldt Jakob Disease Case Report

FINAL AUTOPSY DIAGNOSIS

I. Brain: Creutzfeldt-Jakob disease, Heidenhain variant.

http://creutzfeldt-jakob-disease.blogspot.com/2008/07/heidenhain-variant-creutzfeldt-jakob.html


WHAT ABOUT those old studies at Mission, Texas, where USA scrapie was transmitted to USA cattle, but the results was not c-BSE. IT was a different TSE.

WHAT ABOUT atypical Nor-98 Scrapie in the USA, and TSE there from to other species ???

The key word here is diverse. What does diverse mean?

If USA scrapie transmitted to USA bovine does not produce pathology as the UK c-BSE, then why would CJD from there look like UK vCJD?"

SEE FULL TEXT ;

http://www.promedmail.org/pls/apex/f?p=2400:1001:568933508083034::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1000,82101



.57 The experiment which might have determined whether BSE and scrapie were caused by the same agent (ie, the feeding of natural scrapie to cattle) was never undertaken in the UK. It was, however, performed in the USA in 1979, when it was shown that cattle inoculated with the scrapie agent endemic in the flock of Suffolk sheep at the United States Department of Agriculture in Mission, Texas, developed a TSE quite unlike BSE. 32 The findings of the initial transmission, though not of the clinical or neurohistological examination, were communicated in October 1988 to Dr Watson, Director of the CVL, following a visit by Dr Wrathall, one of the project leaders in the Pathology Department of the CVL, to the United States Department of Agriculture. 33 The results were not published at this point, since the attempted transmission to mice from the experimental cow brain had been inconclusive. The results of the clinical and histological differences between scrapie-affected sheep and cattle were published in 1995. Similar studies in which cattle were inoculated intracerebrally with scrapie inocula derived from a number of scrapie-affected sheep of different breeds and from different States, were carried out at the US National Animal Disease Centre. 34 The results, published in 1994, showed that this source of scrapie agent, though pathogenic for cattle, did not produce the same clinical signs of brain lesions characteristic of BSE.

32 Clark, W., Hourrigan, J. and Hadlow, W. (1995) Encephalopathy in Cattle Experimentally Infected with the Scrapie Agent, American Journal of Veterinary Research, 56, 606-12

33 YB88/10.00/1.1

http://web.archive.org/web/20040823105233/www.bseinquiry.gov.uk/files/yb/1988/10/00001001.pdf



Monday, June 20, 2011 2011

Annual Conference of the National Institute for Animal Agriculture ATYPICAL NOR-98 LIKE SCRAPIE UPDATE USA

http://nor-98.blogspot.com/2011/06/2011-annual-conference-of-national.html


Monday, November 30, 2009

USDA AND OIE COLLABORATE TO EXCLUDE ATYPICAL SCRAPIE NOR-98 ANIMAL HEALTH CODE

http://nor-98.blogspot.com/2009/11/usda-and-oie-collaborate-to-exclude.html


I strenuously urge the USDA and the OIE et al to revoke the exemption of the legal global trading of atypical Nor-98 scrapie TSE. ...TSS



Friday, February 11, 2011

Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues

http://nor-98.blogspot.com/2011/02/atypicalnor98-scrapie-infectivity-in.html


Thursday, July 14, 2011

Histopathological Studies of "CH1641-Like" Scrapie Sources Versus Classical Scrapie and BSE Transmitted to Ovine Transgenic Mice (TgOvPrP4)

http://transmissiblespongiformencephalopathy.blogspot.com/2011/07/histopathological-studies-of-ch1641.html


Thursday, June 2, 2011

USDA scrapie report for April 2011 NEW ATYPICAL NOR-98 SCRAPIE CASES Pennsylvania AND California

http://nor-98.blogspot.com/2011/06/usda-scrapie-report-for-april-2011-new.html


Monday, June 27, 2011

Comparison of Sheep Nor98 with Human Variably Protease-Sensitive Prionopathy and Gerstmann-Sträussler-Scheinker Disease

http://prionopathy.blogspot.com/2011/06/comparison-of-sheep-nor98-with-human.html


BSE: TIME TO TAKE H.B. PARRY SERIOUSLY

If the scrapie agent is generated from ovine DNA and thence causes disease in other species, then perhaps, bearing in mind the possible role of scrapie in CJD of humans (Davinpour et al, 1985), scrapie and not BSE should be the notifiable disease. ...

http://collections.europarchive.org/tna/20090505194948/http://bseinquiry.gov.uk/files/yb/1988/06/08004001.pdf



Suspect symptoms

What if you can catch old-fashioned CJD by eating meat from a sheep infected with scrapie?

28 Mar 01

Like lambs to the slaughter 31 March 2001 by Debora MacKenzie Magazine issue 2284. Subscribe and get 4 free issues. FOUR years ago, Terry Singeltary watched his mother die horribly from a degenerative brain disease. Doctors told him it was Alzheimer's, but Singeltary was suspicious. The diagnosis didn't fit her violent symptoms, and he demanded an autopsy. It showed she had died of sporadic Creutzfeldt-Jakob disease.

Most doctors believe that sCJD is caused by a prion protein deforming by chance into a killer. But Singeltary thinks otherwise. He is one of a number of campaigners who say that some sCJD, like the variant CJD related to BSE, is caused by eating meat from infected animals. Their suspicions have focused on sheep carrying scrapie, a BSE-like disease that is widespread in flocks across Europe and North America.

Now scientists in France have stumbled across new evidence that adds weight to the campaigners' fears. To their complete surprise, the researchers found that one strain of scrapie causes the same brain damage in mice as sCJD.

"This means we cannot rule out that at least some sCJD may be caused by some strains of scrapie," says team member Jean-Philippe Deslys of the French Atomic Energy Commission's medical research laboratory in Fontenay-aux-Roses, south-west of Paris. Hans Kretschmar of the University of Göttingen, who coordinates CJD surveillance in Germany, is so concerned by the findings that he now wants to trawl back through past sCJD cases to see if any might have been caused by eating infected mutton or lamb.

Scrapie has been around for centuries and until now there has been no evidence that it poses a risk to human health. But if the French finding means that scrapie can cause sCJD in people, countries around the world may have overlooked a CJD crisis to rival that caused by BSE.

Deslys and colleagues were originally studying vCJD, not sCJD. They injected the brains of macaque monkeys with brain from BSE cattle, and from French and British vCJD patients. The brain damage and clinical symptoms in the monkeys were the same for all three. Mice injected with the original sets of brain tissue or with infected monkey brain also developed the same symptoms.

As a control experiment, the team also injected mice with brain tissue from people and animals with other prion diseases: a French case of sCJD; a French patient who caught sCJD from human-derived growth hormone; sheep with a French strain of scrapie; and mice carrying a prion derived from an American scrapie strain. As expected, they all affected the brain in a different way from BSE and vCJD. But while the American strain of scrapie caused different damage from sCJD, the French strain produced exactly the same pathology.

"The main evidence that scrapie does not affect humans has been epidemiology," says Moira Bruce of the neuropathogenesis unit of the Institute for Animal Health in Edinburgh, who was a member of the same team as Deslys. "You see about the same incidence of the disease everywhere, whether or not there are many sheep, and in countries such as New Zealand with no scrapie." In the only previous comparisons of sCJD and scrapie in mice, Bruce found they were dissimilar.

But there are more than 20 strains of scrapie, and six of sCJD. "You would not necessarily see a relationship between the two with epidemiology if only some strains affect only some people," says Deslys. Bruce is cautious about the mouse results, but agrees they require further investigation. Other trials of scrapie and sCJD in mice, she says, are in progress.

People can have three different genetic variations of the human prion protein, and each type of protein can fold up two different ways. Kretschmar has found that these six combinations correspond to six clinical types of sCJD: each type of normal prion produces a particular pathology when it spontaneously deforms to produce sCJD.

But if these proteins deform because of infection with a disease-causing prion, the relationship between pathology and prion type should be different, as it is in vCJD. "If we look at brain samples from sporadic CJD cases and find some that do not fit the pattern," says Kretschmar, "that could mean they were caused by infection."

There are 250 deaths per year from sCJD in the US, and a similar incidence elsewhere. Singeltary and other US activists think that some of these people died after eating contaminated meat or "nutritional" pills containing dried animal brain. Governments will have a hard time facing activists like Singeltary if it turns out that some sCJD isn't as spontaneous as doctors have insisted.

Deslys's work on macaques also provides further proof that the human disease vCJD is caused by BSE. And the experiments showed that vCJD is much more virulent to primates than BSE, even when injected into the bloodstream rather than the brain. This, says Deslys, means that there is an even bigger risk than we thought that vCJD can be passed from one patient to another through contaminated blood transfusions and surgical instruments.

http://www.newscientist.com/article/mg16922840.300-like-lambs-to-the-slaughter.html


Monday, December 14, 2009

Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease Are Encoded by Distinct Prion Types

(hmmm, this is getting interesting now...TSS)

Sporadic CJD type 1 and atypical/ Nor98 scrapie are characterized by fine (reticular) deposits,

see also ;

All of the Heidenhain variants were of the methionine/ methionine type 1 molecular subtype.

http://cjdusa.blogspot.com/2009/09/co-existence-of-scrapie-prion-protein.html


see full text ;

Monday, December 14, 2009

Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease Are Encoded by Distinct Prion Types

http://nor-98.blogspot.com/2009/12/similarities-between-forms-of-sheep.html


P03.141

Aspects of the Cerebellar Neuropathology in Nor98

Gavier-Widén, D1; Benestad, SL2; Ottander, L1; Westergren, E1 1National Veterinary Insitute, Sweden; 2National Veterinary Institute,

Norway Nor98 is a prion disease of old sheep and goats. This atypical form of scrapie was first described in Norway in 1998. Several features of Nor98 were shown to be different from classical scrapie including the distribution of disease associated prion protein (PrPd) accumulation in the brain. The cerebellum is generally the most affected brain area in Nor98. The study here presented aimed at adding information on the neuropathology in the cerebellum of Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A panel of histochemical and immunohistochemical (IHC) stainings such as IHC for PrPd, synaptophysin, glial fibrillary acidic protein, amyloid, and cell markers for phagocytic cells were conducted. The type of histological lesions and tissue reactions were evaluated. The types of PrPd deposition were characterized. The cerebellar cortex was regularly affected, even though there was a variation in the severity of the lesions from case to case. Neuropil vacuolation was more marked in the molecular layer, but affected also the granular cell layer. There was a loss of granule cells. Punctate deposition of PrPd was characteristic. It was morphologically and in distribution identical with that of synaptophysin, suggesting that PrPd accumulates in the synaptic structures. PrPd was also observed in the granule cell layer and in the white matter. The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.

***The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.

http://www.prion2007.com/pdf/Prion%20Book%20of%20Abstracts.pdf


PR-26

NOR98 SHOWS MOLECULAR FEATURES REMINISCENT OF GSS

R. Nonno1, E. Esposito1, G. Vaccari1, E. Bandino2, M. Conte1, B. Chiappini1, S. Marcon1, M. Di Bari1, S.L. Benestad3, U. Agrimi1 1 Istituto Superiore di Sanità, Department of Food Safety and Veterinary Public Health, Rome, Italy (romolo.nonno@iss.it); 2 Istituto Zooprofilattico della Sardegna, Sassari, Italy; 3 National Veterinary Institute, Department of Pathology, Oslo, Norway

Molecular variants of PrPSc are being increasingly investigated in sheep scrapie and are generally referred to as "atypical" scrapie, as opposed to "classical scrapie". Among the atypical group, Nor98 seems to be the best identified. We studied the molecular properties of Italian and Norwegian Nor98 samples by WB analysis of brain homogenates, either untreated, digested with different concentrations of proteinase K, or subjected to enzymatic deglycosylation. The identity of PrP fragments was inferred by means of antibodies spanning the full PrP sequence. We found that undigested brain homogenates contain a Nor98-specific PrP fragment migrating at 11 kDa (PrP11), truncated at both the C-terminus and the N-terminus, and not N-glycosylated. After mild PK digestion, Nor98 displayed full-length PrP (FL-PrP) and N-glycosylated C-terminal fragments (CTF), along with increased levels of PrP11. Proteinase K digestion curves (0,006-6,4 mg/ml) showed that FL-PrP and CTF are mainly digested above 0,01 mg/ml, while PrP11 is not entirely digested even at the highest concentrations, similarly to PrP27-30 associated with classical scrapie. Above 0,2 mg/ml PK, most Nor98 samples showed only PrP11 and a fragment of 17 kDa with the same properties of PrP11, that was tentatively identified as a dimer of PrP11. Detergent solubility studies showed that PrP11 is insoluble in 2% sodium laurylsorcosine and is mainly produced from detergentsoluble, full-length PrPSc. Furthermore, among Italian scrapie isolates, we found that a sample with molecular and pathological properties consistent with Nor98 showed plaque-like deposits of PrPSc in the thalamus when the brain was analysed by PrPSc immunohistochemistry. Taken together, our results show that the distinctive pathological feature of Nor98 is a PrP fragment spanning amino acids ~ 90-155. This fragment is produced by successive N-terminal and C-terminal cleavages from a full-length and largely detergent-soluble PrPSc, is produced in vivo and is extremely resistant to PK digestion.

*** Intriguingly, these conclusions suggest that some pathological features of Nor98 are reminiscent of Gerstmann-Sträussler-Scheinker disease.

119

http://www.neuroprion.com/pdf_docs/conferences/prion2006/abstract_book.pdf


A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes

Annick Le Dur*,?, Vincent Béringue*,?, Olivier Andréoletti?, Fabienne Reine*, Thanh Lan Laï*, Thierry Baron§, Bjørn Bratberg¶, Jean-Luc Vilotte?, Pierre Sarradin**, Sylvie L. Benestad¶, and Hubert Laude*,?? +Author Affiliations

*Virologie Immunologie Moléculaires and ?Génétique Biochimique et Cytogénétique, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; ?Unité Mixte de Recherche, Institut National de la Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, Interactions Hôte Agent Pathogène, 31066 Toulouse, France; §Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, 69364 Lyon, France; **Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France; and ¶Department of Pathology, National Veterinary Institute, 0033 Oslo, Norway

***Edited by Stanley B. Prusiner, University of California, San Francisco, CA (received for review March 21, 2005)

Abstract Scrapie in small ruminants belongs to transmissible spongiform encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative disorders that affect humans and animals and can transmit within and between species by ingestion or inoculation. Conversion of the host-encoded prion protein (PrP), normal cellular PrP (PrPc), into a misfolded form, abnormal PrP (PrPSc), plays a key role in TSE transmission and pathogenesis. The intensified surveillance of scrapie in the European Union, together with the improvement of PrPSc detection techniques, has led to the discovery of a growing number of so-called atypical scrapie cases. These include clinical Nor98 cases first identified in Norwegian sheep on the basis of unusual pathological and PrPSc molecular features and "cases" that produced discordant responses in the rapid tests currently applied to the large-scale random screening of slaughtered or fallen animals. Worryingly, a substantial proportion of such cases involved sheep with PrP genotypes known until now to confer natural resistance to conventional scrapie. Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice. *** These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health.

http://www.pnas.org/content/102/44/16031.abstract


Monday, December 1, 2008

When Atypical Scrapie cross species barriers

Authors

Andreoletti O., Herva M. H., Cassard H., Espinosa J. C., Lacroux C., Simon S., Padilla D., Benestad S. L., Lantier F., Schelcher F., Grassi J., Torres, J. M., UMR INRA ENVT 1225, Ecole Nationale Veterinaire de Toulouse.France; ICISA-INlA, Madrid, Spain; CEA, IBiTec-5, DSV, CEA/Saclay, Gif sur Yvette cedex, France; National Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway, INRA IASP, Centre INRA de Tours, 3738O Nouzilly, France.

Content

Atypical scrapie is a TSE occurring in small ruminants and harbouring peculiar clinical, epidemiological and biochemical properties. Currently this form of disease is identified in a large number of countries. In this study we report the transmission of an atypical scrapie isolate through different species barriers as modeled by transgenic mice (Tg) expressing different species PRP sequence.

The donor isolate was collected in 1995 in a French commercial sheep flock. inoculation into AHQ/AHQ sheep induced a disease which had all neuro-pathological and biochemical characteristics of atypical scrapie. Transmitted into Transgenic mice expressing either ovine or PrPc, the isolate retained all the described characteristics of atypical scrapie.

Surprisingly the TSE agent characteristics were dramatically different v/hen passaged into Tg bovine mice. The recovered TSE agent had biological and biochemical characteristics similar to those of atypical BSE L in the same mouse model. Moreover, whereas no other TSE agent than BSE were shown to transmit into Tg porcine mice, atypical scrapie was able to develop into this model, albeit with low attack rate on first passage.

Furthermore, after adaptation in the porcine mouse model this prion showed similar biological and biochemical characteristics than BSE adapted to this porcine mouse model. Altogether these data indicate.

(i) the unsuspected potential abilities of atypical scrapie to cross species barriers

(ii) the possible capacity of this agent to acquire new characteristics when crossing species barrier

These findings raise some interrogation on the concept of TSE strain and on the origin of the diversity of the TSE agents and could have consequences on field TSE control measures.

http://www.neuroprion.org/resources/pdf_docs/conferences/prion2008/abstract-book-prion2008.pdf



Tuesday, April 28, 2009

Nor98-like Scrapie in the United States of America

http://nor-98.blogspot.com/2009/04/nor98-like-scrapie-in-united-states-of.html


Heidenhain Variant Creutzfeldt Jakob Disease autopsy case report 'MOM'

DIVISION OF NEUROPATHOLOGY University of Texas Medical Branch 114 McCullough Bldg. Galveston, Texas 77555-0785

FAX COVER SHEET

DATE: 4-23-98

TO: Mr. Terry Singeltary @ -------

FROM: Gerald Campbell

FAX: (409) 772-5315 PHONE: (409) 772-2881

Number of Pages (including cover sheet):

Message:

*CONFIDENTIALITY NOTICE*

This document accompanying this transmission contains confidential information belonging to the sender that is legally privileged. This information is intended only for the use of the individual or entry names above. If you are not the intended recipient, you are hereby notified that any disclosure, copying distribution, or the taking of any action in reliances on the contents of this telefaxed information is strictly prohibited. If you received this telefax in error, please notify us by telephone immediately to arrange for return of the original documents. -------------------------- Patient Account: 90000014-518 Med. Rec. No.: (0160)118511Q Patient Name: POULTER, BARBARA Age: 63 YRS DOB: 10/17/34 Sex: F Admitting Race: C

Attending Dr.: Date / Time Admitted : 12/14/97 1228 Copies to:

UTMB University of Texas Medical Branch Galveston, Texas 77555-0543 (409) 772-1238 Fax (409) 772-5683 Pathology Report

FINAL AUTOPSY DIAGNOSIS Autopsy' Office (409)772-2858

Autopsy NO.: AU-97-00435

AUTOPSY INFORMATION: Occupation: Unknown Birthplace: Unknown Residence: Crystal Beach Date/Time of Death: 12/14/97 13:30 Date/Time of Autopsy: 12/15/97 15:00 Pathologist/Resident: Pencil/Fernandez Service: Private Restriction: Brain only

FINAL AUTOPSY DIAGNOSIS

I. Brain: Creutzfeldt-Jakob disease, Heidenhain variant.

http://creutzfeldt-jakob-disease.blogspot.com/2008/07/heidenhain-variant-creutzfeldt-jakob.html


P.9.21

Molecular characterization of BSE in Canada

Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre, Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of Calgary, Canada

Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle.

Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.

Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal- specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada.

*** It also suggests a similar cause or source for atypical BSE in these countries.

http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf


Saturday, July 23, 2011

CATTLE HEADS WITH TONSILS, BEEF TONGUES, SPINAL CORD, SPECIFIED RISK MATERIALS (SRM's) AND PRIONS, AKA MAD COW DISEASE

http://transmissiblespongiformencephalopathy.blogspot.com/2011/07/cattle-heads-with-tonsils-beef-tongues.html


Saturday, November 6, 2010

TAFS1 Position Paper on Position Paper on Relaxation of the Feed Ban in the EU Berne, 2010 TAFS

INTERNATIONAL FORUM FOR TRANSMISSIBLE ANIMAL DISEASES AND FOOD SAFETY a non-profit Swiss Foundation

http://madcowfeed.blogspot.com/2010/11/tafs1-position-paper-on-position-paper.html


Archive Number 20101206.4364 Published Date 06-DEC-2010 Subject PRO/AH/EDR

Prion disease update 2010 (11)

PRION DISEASE UPDATE 2010 (11)



http://www.promedmail.org/pls/apex/f?p=2400:1001:5492868805159684::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1000,86129




Identifying Variation in the U.S. Bovine Prion Gene

Bovine spongiform encephalopathy—BSE, or mad cow disease—is a serious threat to the U.S. beef industry.

While the first confirmed case of BSE on U.S. soil in December 2003 had little effect on domestic consumption, it carved into our international beef sales. According to USDA’s Economic Research Service, the United States exported only $552 million worth of beef in 2004—down from $2.6 billion in 2002 and $3.1 billion in 2003—a reduction due, in part, to the BSE case.

Are some cattle more susceptible to BSE? Is there a genetic component involved?

To address these and other questions, ARS scientists at the U.S. Meat Animal Research Center (USMARC) at Clay Center, Nebraska, have sequenced the bovine prion gene, PRNP, in 192 cattle representing 16 beef and 5 dairy breeds common in the United States. This work was partially funded by a grant from USDA’s Cooperative State Research, Education, and Extension Service.

Prions are proteins that occur naturally in mammals. BSE is a fatal neurological disorder characterized by irregularly folded prions. Much is unknown about the disease, but scientists recognize a correlation between variations in the PRNP gene in some mammals and susceptibility to transmissible spongiform encephalopathies, such as scrapie in sheep.

“Evidence indicates that this could also be true in cattle,” says molecular biologist Mike Clawson. He is among the USMARC scientists examining PRNP variation to learn if and how different forms, or alleles, of the prion gene correlate with BSE susceptibility.

A thorough characterization of PRNP variation in a U.S. cattle population will provide a reference framework for researchers to use in analyzing PRNP sequences from cattle afflicted with BSE.

From the 192 PRNP genes sequenced, Clawson and his colleagues have identified 388 variations, or polymorphisms, of which 287 were previously unknown. Some of these polymorphisms may influence BSE susceptibility in cattle, he says. Ongoing studies with European collaborators are testing the newly identified variants for association with BSE. If these studies show some cattle to be genetically less susceptible to the disease, this information could shed light on BSE’s transmission and development.

The United States has had only three confirmed cases of BSE. Laboratory tests showed that the second and third of these appear to differ significantly from the first case, says Clawson.

“By comparing the PRNP sequence from BSE-infected cattle to healthy cattle, we may be able to identify genetic markers in the prion gene that predict BSE susceptibility,” he says.

In addition to PRNP, the team is currently sequencing several genes closely related to it. These too will be tested for their association with BSE.

“The prevalence of BSE in the United States is extremely low and is declining worldwide,” Clawson says. “Well-characterized genetic markers that correlate to resistance could improve our understanding of the disease and prepare the cattle industry to respond if another prion disease arises in the future.”—By Laura McGinnis, Agricultural Research Service Information Staff.

This research is part of Animal Health, an ARS National Program (#103) described on the World Wide Web at www.nps.ars.usda.gov.

Michael L. Clawson is at the USDA-ARS Roman L. Hruska U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE 68933; phone (402) 762-4342, fax (402) 762-4375.

"Identifying Variation in the U.S. Bovine Prion Gene" was published in the January 2007 issue of Agricultural Research magazine.

http://seprl.ars.usda.gov/is/AR/archive/jan07/bovine0107.htm?pf=1


Research Project: Susceptibility of Cattle with the E211k Prnp Allele to Bse

Location: Virus and Prion Research Unit

Project Number: 3625-32000-086-14 Project Type: Specific Cooperative Agreement

Start Date: Aug 14, 2008 End Date: Jul 31, 2013

Objective:

The objective of this cooperative research project is to investigate the influence of the bovine Prnp gene polymorphisms, E211K, on the susceptibility to BSE. Specifically, the research project will provide 134 embryos that will be used to generate approximately 62 animals, 31 of which will contain the rare allele for the purposes BSE research. This ongoing SCA with Iowa State University to produce cattle with the E211K Prnp allele for BSE research has resulted in an E211/K211 heterozygous bull. We are now in the unique position to extend our research on this allele to include animals homozygous for K at position 211. Based upon our understanding of this novel polymorphism one would predict homozygotes would have a more rapid onset of clinical signs associated with genetic BSE than heterozygotes.

Approach:

To achieve the research goals it is imperative to increase the number of animals available to study this Prnp polymorphism. One female calf of the 2006 BSE case was identified and carries the E211K allele. The specific objectives are to be accomplished through the production of multiple offspring from this E211K heifer through superovulation and embryo transfer. Approximately 50% of the offspring will be heterozygous for the E211K polymorphism while the others will serve as genetically matched non-E211K controls. Collection of semen from an E211K heterozygous bull will allow creation of E211K homozygotes. To protect this unique resource immediate collection of embryos is necessary. The initial goal is to harvest 134 embryos that should result in approximately 62 pregnancies (half of which will carry the E211K polymorphism) for immediate use in the studies to amplify the E211K material, test for genetic susceptibility to TSE, and develop a breeding group to produce calves for transmissibility studies. To achieve the goal of understanding the role of the E211K polymorphism with regard to genetic BSE we have utilized superovulation and embryo transfer obtaining a E211/K211 containing bull. We are now in a position to collect semen from the E211/K211 heterozygous bull to create K211/K211 homozygotes. To accomplish this goal we plan to collect semen from this bull and through artificial insemination using semen from the E211/K211 bull with superovulation and embryo transplantation using other E211/K211 heterzygotes generate 30-40 embryos resulting in 15-20 pregnancies yielding approximately 5 K211/K211 homozygous animals and 10 E211/K211 heterozyous animals as well as 5 E211/E211 homozygous controls.

http://www.ars.usda.gov/research/projects/projects.htm?accn_no=413249


http://www.cdc.gov/eid/content/15/12/pdfs/2013.pdf



Subject: Identifying Variation in the U.S. Bovine Prion Gene Date: January 22, 2007 at 8:32 am PST

Identifying Variation in the U.S. Bovine Prion Gene By Laura McGinnis January 22, 2007 Do genes affect bovine spongiform encephalopathy?also known as BSE, or "mad cow" disease? Are some cattle more susceptible than others?

To address these and other questions, Agricultural Research Service (ARS) scientists at the U.S. Meat Animal Research Center in Clay Center, Neb., have sequenced the bovine prion gene (PRNP) in 192 cattle that represent 16 beef and five dairy breeds common in the United States.

This work, partially funded by a grant from the U.S. Department of Agriculture's Cooperative State Research, Education and Extension Service, is expanding the understanding of how the disease works.

BSE is a fatal neurological disorder characterized by prions?proteins that occur naturally in mammals?that fold irregularly. Molecular biologist Mike Clawson and his Clay Center colleagues are examining PRNP variation in order to learn if and how prions correlate with BSE susceptibility.

From the 192 PRNP sequences, Clawson and his colleagues have identified 388 variations, or polymorphisms, 287 of which were previously unknown. Some of these polymorphisms may influence BSE susceptibility in cattle.

Comparing PRNP sequences from infected and healthy cattle may enable researchers to identify genetic markers in the prion gene that predict BSE susceptibility. In addition to PRNP, the team is currently sequencing several closely related genes, which will also be tested for their association with BSE.

The prevalence of BSE in the United States is extremely low, but this research could improve understanding of the disease and prepare the cattle industry to respond if another prion disease should arise in the future.

http://www.ars.usda.gov/is/pr/2007/070122.htm


Identifying Variation in the U.S. Bovine Prion Gene

Bovine spongiform encephalopathy (BSE, or mad cow disease) is a serious threat to the U.S. beef industry.

While the first confirmed case of BSE on U.S. soil in December 2003 had little effect on domestic consumption, it carved into our international beef sales. According to USDAs Economic Research Service, the United States exported only $552 million worth of beef in 2004 down from $2.6 billion in 2002 and $3.1 billion in 2003 a reduction due, in part, to the BSE case.

Are some cattle more susceptible to BSE? Is there a genetic component involved?

To address these and other questions, ARS scientists at the U.S. Meat Animal Research Center (USMARC) at Clay Center, Nebraska, have sequenced the bovine prion gene, PRNP, in 192 cattle representing 16 beef and 5 dairy breeds common in the United States. This work was partially funded by a grant from USDA?s Cooperative State Research, Education, and Extension Service.

Prions are proteins that occur naturally in mammals. BSE is a fatal neurological disorder characterized by irregularly folded prions. Much is unknown about the disease, but scientists recognize a correlation between variations in the PRNP gene in some mammals and susceptibility to transmissible spongiform encephalopathies, such as scrapie in sheep.

Evidence indicates that this could also be true in cattle, says molecular biologist Mike Clawson. He is among the USMARC scientists examining PRNP variation to learn if and how different forms, or alleles, of the prion gene correlate with BSE susceptibility.

A thorough characterization of PRNP variation in a U.S. cattle population will provide a reference framework for researchers to use in analyzing PRNP sequences from cattle afflicted with BSE.

From the 192 PRNP genes sequenced, Clawson and his colleagues have identified 388 variations, or polymorphisms, of which 287 were previously unknown. Some of these polymorphisms may influence BSE susceptibility in cattle, he says. Ongoing studies with European collaborators are testing the newly identified variants for association with BSE. If these studies show some cattle to be genetically less susceptible to the disease, this information could shed light on BSEs transmission and development.

The United States has had only three confirmed cases of BSE. Laboratory tests showed that the second and third of these appear to differ significantly from the first case, says Clawson.

By comparing the PRNP sequence from BSE-infected cattle to healthy cattle, we may be able to identify genetic markers in the prion gene that predict BSE susceptibility, he says.

In addition to PRNP, the team is currently sequencing several genes closely related to it. These too will be tested for their association with BSE.

The prevalence of BSE in the United States is extremely low and is declining worldwide, Clawson says. Well-characterized genetic markers that correlate to resistance could improve our understanding of the disease and prepare the cattle industry to respond if another prion disease arises in the future. By Laura McGinnis, Agricultural Research Service Information Staff.

This research is part of Animal Health, an ARS National Program (#103) described on the World Wide Web at www.nps.ars.usda.gov.

Michael L. Clawson is at the USDA-ARS Roman L. Hruska U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE 68933; phone (402) 762-4342, fax (402) 762-4375.

http://www.ars.usda.gov/is/AR/archive/jan07/bovine0107.htm


http://www.ars.usda.gov/is/AR/archive/jan07/bovine0107.pdf


Title: Prion gene haplotypes of U.S. cattle

Authors

Clawson, Michael - mike Heaton, Michael - mike Keele, John Smith, Timothy - tim Harhay, Gregory Laegreid, William - will

Submitted to: BioMed Central (BMC) Genetics Publication Type: Peer Reviewed Journal Publication Acceptance Date: October 24, 2006 Publication Date: November 8, 2006 Reprint URL: http://www.biomedcentral.com/1471-2156/7/51 Citation: Clawson, M.L., Heaton, M.P., Keele, J.W., Smith, T.P., Harhay, G.P., Laegreid, W.W. 2006. Prion gene haplotypes of U.S. cattle. BioMed Central (BMC) Genetics. 7:51.

Interpretive Summary: Transmissible spongiform encephalopathies (TSEs) are fatal neurological disorders that are characterized by abnormal deposits of the prion protein. TSEs have been identified in cats, cattle, deer, elk, humans, mink, moose, and sheep. The cattle TSE, bovine spongiform encephalopathy (BSE) is also known as mad cow disease. BSE is the probable cause of the human TSE variant Creutzfeldt-Jakob disease, transmitted from cattle to people via the food chain. Sequence variation in the prion gene correlates with TSE progression in humans, sheep, and mice. Additionally, there is evidence that bovine PRNP variation correlates with BSE progression. In this study, 25.2 kb of PRNP was sequenced from the promoter region through the three prime untranslated region in 192 U.S. cattle (16 beef, five dairy breeds). Three hundred and eighty eight polymorphisms were observed, of which 287 have not been previously reported. A subset of polymorphisms that efficiently tag genetic variation in U.S. cattle was identified. The results of this study provide a reference framework for accurate and comprehensive evaluation of prion gene variation and its relationship to BSE. Technical Abstract: Background: Bovine spongiform encephalopathy (BSE) is a fatal neurological disorder characterized by abnormal deposits of a protease-resistant isoform of the prion protein. Characterizing linkage disequilibrium (LD) and haplotype networks within the bovine prion gene (PRNP) is important for 1) testing rare or common PRNP variation for an association with BSE and 2) interpreting any association of PRNP alleles with BSE susceptibility. The objective of this study was to identify polymorphisms and haplotypes within PRNP from the promoter region through the 3'UTR in a diverse sample of U.S. cattle genomes. Results: A 25.2-kb genomic region containing PRNP was sequenced from 192 diverse U.S. beef and dairy cattle. Sequence analyses identified 388 total polymorphisms, of which 287 have not previously been reported. The polymorphism alleles define PRNP by regions of high and low LD. High LD is present between alleles in the promoter region through exon 2 (6.7 kb). PRNP alleles within the majority of intron 2, the entire coding sequence and the untranslated region of exon 3 are in low LD (18.0 kb). Two haplotype networks, one representing the region of high LD and the other the region of low LD yielded nineteen different combinations that represent haplotypes spanning PRNP. The haplotype combinations are tagged by 19 polymorphisms (htSNPS) which characterize variation within and across PRNP.

Conclusion: The number of polymorphisms in the prion gene region of U.S. cattle is nearly four times greater than previously described. These polymorphisms define PRNP haplotypes that may influence BSE susceptibility in cattle.

http://www.ars.usda.gov/research/publications/publications.htm?seq_no_115=195487


Title: Frequencies of polymorphisms associated with BSE resistance differ significantly between Bos taurus, Bos indicus, and composite cattle

Authors

BRUNELLE, BRIAN GREENLEE, JUSTIN Seabury, Christopher - TEXAS A&M UNIVERSITY Brown Ii, Charles - ABS GLOBAL NICHOLSON, ERIC

Submitted to: BioMed Central (BMC) Veterinary Research Publication Type: Peer Reviewed Journal Publication Acceptance Date: August 22, 2008 Publication Date: August 22, 2008 Citation: Brunelle, B.W., Greenlee, J.J., Seabury, C.M., Brown II, C.E., Nicholson, E.M. 2008. Frequencies of Polymorphisms Associated with BSE Resistance Differ Significantly Between Bos taurus, Bos indicus, and Composite Cattle. BioMed Central (BMC) Veterinary Research. 4(1):36. Available: http://www.biomedcentral.com/1746-6148/4/36.

Interpretive Summary: Bovine spongiform encephalopathy (BSE) is a neurodegenerative prion disease of cattle. There are three host factors related to the host prion protein known to influence susceptibility or resistance to BSE: single amino acid changes in the prion protein, repeat regions within the prion protein, and expression levels of the prion protein. These factors have been well documented in breeds of Bos taurus cattle, but there is little-to-no data on these factors in Bos indicus purebred or Bos indicus x Bos taurus crossbred cattle. Since Bos indicus cattle contribute to the U.S. cattle population, we wanted to determine the frequency of the host factors associated with BSE susceptibility. We studied 58 Bos indicus purebred and 38 Bos indicus x Bos taurus crossbred cattle. The only differences between Bos indicus and Bos taurus cattle were in two factors associated with prion protein expression levels. It was observed that Bos indicus cattle had a much higher frequency of one factor associated with resistance to BSE compared to Bos taurus cattle, while the second factor associated with resistance to BSE was much lower in Bos indicus cattle compared to Bos taurus cattle. This data is useful in determining the relative risk of BSE in Bos indicus cattle based upon these factors. Technical Abstract: Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases that affect several mammalian species. At least three factors related to the host prion protein are known to modulate susceptibility or resistance to a TSE: amino acid sequence, atypical number of octapeptide repeats, and expression level. These factors have been extensively studied in breeds of Bos taurus cattle in relation to bovine spongiform encephalopathy (BSE). However, little is currently known about these factors in Bos indicus purebred or B. indicus x B. taurus crossbred cattle. The goal of our study was to establish the frequency of markers associated with enhanced susceptibility or resistance to BSE in B. indicus purebred and crossbred cattle.

http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=224736


18 January 2007 - Draft minutes of the SEAC 95 meeting (426 KB) held on 7 December 2006 are now available.

snip...

ITEM 9 - ANY OTHER BUSINESS

snip...

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

64. A member noted that at the recent Neuroprion meeting, a study was presented showing that in transgenic mice BSE passaged in sheep may be more virulent and infectious to a wider range of species than bovine derived BSE. Other work presented suggested that BSE and bovine amyloidotic spongiform encephalopathy (BASE) MAY BE RELATED. A mutation had been identified in the prion protein gene in an AMERICAN BASE CASE THAT WAS SIMILAR IN NATURE TO A MUTATION FOUND IN CASES OF SPORADIC CJD. A study also demonstrated that in a mouse model it was possible to alleviate the pathological changes of prion disease by suppressing expression of the prion protein gene after infection.

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

NOW PLEASE GO BACK AND READ THAT SECOND PARAGRAPH AGAIN.....TSS

http://www.seac.gov.uk/minutes/95.pdf


PLEASE READ FULL TEXT ;

http://www.cdc.gov/ncidod/EID/vol12no12/06-0965.htm?s_cid=eid06_0965_e


Discussion

This study assessed the prevalence of specific BSE-associated factors in B. indicus purebred and composite cattle, which were then compared to frequencies observed in B. taurus cattle. Through PRNP sequence analysis, we surveyed cattle for the presence of an E211K amino acid replacement, as well as the presence of 7 or more octapeptide repeats. In addition, we determined the frequencies of the 23-bp and 12-bp indel regions associated with bovine PRNP transcriptional regulation.

None of the PRNP alleles for the B. indicus samples evaluated in this study exhibited an E211K amino acid replacement or any novel coding region polymorphism. To date, the E211K change has been reported in only two bovine samples, the 2006 Alabama atypical BSE case [7] and its only known living offspring [8]. The affected animal was a composite (B. taurus × B. indicus), but because no parental information is currently available, it is unknown whether the corresponding nucleotide change was inherited or the result of spontaneous mutation. If it was inherited, then the E211K allele may have originated in either a B. taurus ancestor or a B. indicus ancestor. Unfortunately, the data presented here cannot facilitate a species level assignment, as the PRNP coding sequence of the 2006 Alabama case did not possess any species-specific polymorphisms. This particular animal was determined to possess one haplotype with a 23 and 12-bp insertion, and the other with a 23 and 12-bp deletion [27]. These 2 haplotypes occur in 92% of B. taurus, but only in 25% B. indicus cattle (Table ?(Table1),1), as estimated by our analyses. Unless more information becomes available, it cannot be determined where the E211K replacement may have originated.

No B. indicus sample had an octapeptide region containing more than 6 repeats. Notably, humans are the only TSE-susceptible mammal besides the Brown Swiss breed of B. taurus cattle for which additional octapeptide repeats have been observed. Interestingly, a transgenic mouse model expressing bovine PrPC with 1 extra repeat was more susceptible to BSE challenge than a transgenic mouse with the normal number of repeats, but did not develop a spontaneous prion disease [14]. However, a transgenic mouse expressing a bovine PRNP gene encoding 4 additional repeats did in fact develop a spontaneous prion disease [15]. While cattle with 1 additional octapeptide repeat may have an enhanced risk for classical BSE only if exposed to infected material, the appearance of PRNP genes encoding extra octapeptide repeats in any cattle breed may be cause for concern.

The incidence of E211K as well as octapeptide regions with 7 repeats among cattle does not provide a species-level explanation for potential differences in susceptibility to BSE among B. taurus and B. indicus cattle. Therefore, only the 23-bp and 12-bp indel regions seem pertinent in these populations because both of these bovine PRNP sequence regions have been shown to influence transcription levels of PrPC. The B. indicus purebred and composite cattle had a very low frequency of the 23-bp insertion as compared to B. taurus, while only B. indicus purebred cattle had a high frequency of the 12-bp insertion. To date, no consensus has emerged regarding whether one of these bovine PRNP regions is more influential than the other with respect to classical BSE resistance in cattle. Originally, only the 23-bp region was found to be significantly associated with (classical) BSE resistance [26]. Using a reporter gene assay, it was later concluded that the 23-bp indel region was the most relevant locus, as the only constructs that lowered expression levels were those containing the 23-bp insertion [25]. In contrast, other reports indicate the 12-bp indel is more relevant both statistically [24] and in a reporter gene assay [30]. The discrepancy between the significance of these two regions with respect to resistance or susceptibility to classical BSE may be influenced by 3 or more factors. First, the 23-bp and 12-bp regions are physically linked (~2-Kbp apart). Therefore, recombination is most likely rare given the small distance separating the two indel polymorphisms. Moreover, high levels of linkage disequilibrium have been detected for genetic variation within the bovine PRNP promoter and intron 1 [31]. Secondarily, the 23-bp insertion and 12-bp deletion haplotype is absent among cattle surveyed to date, thereby creating an equal-to-greater overall frequency of 12-bp insertions as compared to the frequency spectrum of 23-bp insertions. More specifically, twice as many haplotypes (n = 12) contribute to the overall frequency of the 12-bp intron 1 insertion as those contributing to the frequency of the 23-bp insertion (n = 6; Table ?Table2).2). This may inevitably bias indel association studies. Lastly, species specific allelic variation associated with the genetic backgrounds of B. taurus and B. indicus may differentially interact with the 23-bp promoter and 12-bp intron 1 PRNP polymorphisms, perhaps making each polymorphism more or less relevant in a particular bovine species. On the basis of indel genotype alone, if it is ultimately concluded that the 23-bp insertion has a greater influence than the 12-bp insertion with respect to resistance to classical BSE in cattle following exposure to infected material, B. indicus purebred and composite cattle would be at greater risk than B. taurus cattle. Conversely, if the 12-bp insertion were to modulate a greater level of resistance to BSE, then B. indicus cattle would be at a lower risk than B. taurus and composite cattle.

Other Sections?

Conclusion

We determined the frequencies of known genetic factors associated with differential susceptibility to BSE in B. indicus purebred and B. indicus × B. taurus composite cattle, as compared to B. taurus purebred cattle. No deviations from the expected numbers of octapeptide repeats were detected for B. indicus purebred and composite cattle. Likewise, the E211K substitution was not detected within the PRNP coding sequences for cattle investigated herein. However, a significant difference was detected for a comparison of the 23-bp and 12-bp indel genotype frequencies between B. indicus and B. taurus cattle. The origin of this result could be attributed to significant differences in haplotype frequencies among B. indicus, B. taurus, and composite cattle. Currently, it is unknown which bovine PRNP region (23-bp promoter; 12-bp intron 1), if either, may be more important with respect to differential susceptibility to classical BSE in cattle following exposure to the etiologic agent. Should either the 23-bp promoter region or the 12-bp intron 1 region of the bovine PRNP prove more biologically relevant to the manifestation of disease, substantial heritable differences in overall susceptibility or resistance to classical BSE may exist between B. indicus and B. taurus cattle.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2569919/


let's take a closer look at this new prionpathy or prionopathy, and then let's look at the g-h-BSEalabama mad cow.

This new prionopathy in humans? the genetic makeup is IDENTICAL to the g-h-BSEalabama mad cow, the only _documented_ mad cow in the world to date like this, ......wait, it get's better. this new prionpathy is killing young and old humans, with LONG DURATION from onset of symptoms to death, and the symptoms are very similar to nvCJD victims, OH, and the plaques are very similar in some cases too, bbbut, it's not related to the g-h-BSEalabama cow, WAIT NOW, it gets even better, the new human prionpathy that they claim is a genetic TSE, has no relation to any gene mutation in that family. daaa, ya think it could be related to that mad cow with the same genetic make-up ??? there were literally tons and tons of banned mad cow protein in Alabama in commerce, and none of it transmitted to cows, and the cows to humans there from ??? r i g h t $$$

ALABAMA MAD COW g-h-BSEalabama

In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K mutation.

http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1000156


http://www.plospathogens.org/article/fetchObjectAttachment.action?uri=info%3Adoi%2F10.1371%2Fjournal.ppat.1000156&representation=PDF


her healthy calf also carried the mutation (J. A. Richt and S. M. Hall PLoS Pathog. 4, e1000156; 2008).

This raises the possibility that the disease could occasionally be genetic in origin. Indeed, the report of the UK BSE Inquiry in 2000 suggested that the UK epidemic had most likely originated from such a mutation and argued against the scrapierelated assumption. Such rare potential pathogenic PRNP mutations could occur in countries at present considered to be free of BSE, such as Australia and New Zealand. So it is important to maintain strict surveillance for BSE in cattle, with rigorous enforcement of the ruminant feed ban (many countries still feed ruminant proteins to pigs). Removal of specified risk material, such as brain and spinal cord, from cattle at slaughter prevents infected material from entering the human food chain. Routine genetic screening of cattle for PRNP mutations, which is now available, could provide additional data on the risk to the public. Because the point mutation identified in the Alabama animals is identical to that responsible for the commonest type of familial (genetic) CJD in humans, it is possible that the resulting infective prion protein might cross the bovine–human species barrier more easily. Patients with vCJD continue to be identified. The fact that this is happening less often should not lead to relaxation of the controls necessary to prevent future outbreaks.

Malcolm A. Ferguson-Smith Cambridge University Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK e-mail: maf12@cam.ac.uk Jürgen A. Richt College of Veterinary Medicine, Kansas State University, K224B Mosier Hall, Manhattan, Kansas 66506-5601, USA

NATURE|Vol 457|26 February 2009

http://www.nature.com/nature/journal/v457/n7233/full/4571079b.html


Friday, September 23, 2011

Bovine spongiform encephalopathy associated insertion/deletion polymorphisms of the prion protein gene in the four beef cattle breeds from North China

http://transmissiblespongiformencephalopathy.blogspot.com/2011/09/bovine-spongiform-encephalopathy.html


Thursday, June 23, 2011

Experimental H-type bovine spongiform encephalopathy characterized by plaques and glial- and stellate-type prion protein deposits

http://transmissiblespongiformencephalopathy.blogspot.com/2011/06/experimental-h-type-bovine-spongiform.html


I am sure that most of you are aware of the Texas mad cow cases that were covered up. the 1st documented cover-up was successful, the second documented case of mad cow in Texas would have been successful, but after literally, an act of Congress to override Austin, Texas officials (rick perry), only after the Honorable Fong of the OIG, and scientist all over the world, and a few others, including myself wrote to the OIG about said cover-up, and 7 months later, did they finally retest that covered-up highly suspect mad cow, and said covered up mad cow was finally _confirmed_ by Weybridge as a confirmed Texas BSE mad cow case. this 7 months after the fact on a Government BSE REDBOOK regulations of a 48 turn around on said test. over course this was all done for a reason, the BSE MRR policy was being put into place while all this was going on, and Heaven forbid if rick perry would have had a confirmed BSE mad cow case while those regulations were over riding the BSE GBR risk assessments. however, during all this political science on mad cow disease, it was nothing more than a crap shoot, and 15 years later, we now know that some of the sporadic CJD cases are indeed tied to the atypical BSE cases here in North America. How many people during the Bush/Perry era, how many did they needlessly expose to mad cow disease? how many will go clinical and die in the decades to come? Whether or not you dare care, during the Bush/Perry era, they exposed our kids to mad cow disease, by feeding them dead stock downer cows via the NSLP, for over 4 years. DEAD STOCK DOWNER COWS ARE THE MOST HIGH RISK COW FOR MAD COW DISEASE. WHO will watch the children for the next 5 decades for CJD ???

http://www.organicconsumers.org/articles/article_23850.cfm



Thursday, July 21, 2011

A Second Case of Gerstmann-Sträussler-Scheinker Disease Linked to the G131V Mutation in the Prion Protein Gene in a Dutch Patient Journal of Neuropathology & Experimental Neurology:

August 2011 - Volume 70 - Issue 8 - pp 698-702

http://transmissiblespongiformencephalopathy.blogspot.com/2011/07/second-case-of-gerstmann-straussler.html


Saturday, August 14, 2010

BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY

(see mad cow feed in COMMERCE IN ALABAMA...TSS)

http://prionpathy.blogspot.com/2010/08/bse-case-associated-with-prion-protein.html


Wednesday, June 15, 2011

Galveston, Texas - Isle port moves through thousands of heifers headed to Russia, none from Texas, Alabama, or Washington, due to BSE risk factor

http://transmissiblespongiformencephalopathy.blogspot.com/2011/06/galveston-texas-isle-port-moves-through.html


Saturday, March 5, 2011

MAD COW ATYPICAL CJD PRION TSE CASES WITH CLASSIFICATIONS PENDING ON THE RISE IN NORTH AMERICA

http://transmissiblespongiformencephalopathy.blogspot.com/2011/03/mad-cow-atypical-cjd-prion-tse-cases.html


Thursday, August 4, 2011

Terry Singeltary Sr. on the Creutzfeldt-Jakob Disease Public Health Crisis, Date aired: 27 Jun 2011

http://transmissiblespongiformencephalopathy.blogspot.com/2011/08/terry-singeltary-sr-on-creutzfeldt.html


Wednesday, September 21, 2011

PrioNet Canada researchers in Vancouver confirm prion-like properties in Amyotrophic Lateral Sclerosis (ALS)

http://transmissiblespongiformencephalopathy.blogspot.com/2011/09/prionet-canada-researchers-in-vancouver.html


see TSE prion updates ;

http://transmissiblespongiformencephalopathy.blogspot.com/




TSS

Labels: , , , ,

Sunday, March 28, 2010

SPAIN BSE, Nor-98 atypical scrapie, SPORADIC CJD HIGH INCIDENT RATE >2 PER MILLION

Numero de focos de Encefalopatia Espongiforme Bovine en Espana 2009 - 1010


2009 = 18 cases BSE

http://www.eeb.es/pags/2009.htm


2010 to date = 4 cases of BSE

http://www.eeb.es/pags/espana.htm#2010


BSE SPAIN

Año 2000

http://www.eeb.es/pags/2000.htm


Año 2001

http://www.eeb.es/pags/2000.htm#2001


Año 2002

http://www.eeb.es/pags/2002.htm


Año 2003

http://www.eeb.es/pags/2003.htm


Año 2004

http://www.eeb.es/pags/2004.htm


Año 2005

http://www.eeb.es/pags/2005.htm


Año 2006

http://www.eeb.es/pags/2006.htm


Año 2007

http://www.eeb.es/pags/2007.htm


Año 2008

http://www.eeb.es/pags/2008.htm


Año 2009

http://www.eeb.es/pags/2009.htm


BSE SPAIN 2010 Situacion en Espana Total casos

http://www.eeb.es/pags/espana.htm#2010



Greetings,

PLEASE NOTE HIGH INCIDENT OF SPORADIC CJD AND BSE IN THE ALAVA, VIZCAYA, AND GUIPUZCOA AREAS ? another coincident, or BSE related. remember, BSE will propagate as nvCJD and or sporadic CJD in humanized transgenic mice, and please NOTE ALSO, the close proximity of BASQUE COUNTRY SPAIN TO ALAVA, VIZCAYA, AND GUIPUZCOA AREAS ? SO, you have a high rate of sporadic CJD cases in an area of BSE and Nor-98 atypical scrapie cases, another spontaneous coincidence, or a related event ?


NOTE THE SPORADIC CJD INCIDENT RATE AT > 2 CASES PER MILLION ;


SEE CJD UPDATE 2010

SEE PAGE 4 ;

Notificaciones* al RNEETH (1993-febrero 2010)

• Por año diagnóstico. Existe 1 caso más sin año diagnóstico

AÑO

CCAA 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 TOTAL

Andalucia 4 6 2 2 5 4 8 11 16 14 9 11 16 15 13 19 11 1 167

Aragon 0 0 1 0 5 4 1 3 4 0 2 0 5 2 2 5 4 1 39

Asturias 2 0 2 0 1 2 3 2 2 0 5 2 1 0 0 0 0 0 22

Baleares 1 2 0 1 1 0 2 0 1 1 1 3 1 0 0 1 4 0 19

Canarias 0 0 0 0 4 4 4 2 2 2 2 2 2 3 3 1 3 0 34

Cantabria 1 2 0 0 2 4 3 3 0 2 0 0 1 0 0 2 0 0 20

Castilla la Mancha 0 1 1 2 2 1 2 2 1 2 0 2 5 3 5 6 7 0 42

Castilla-Leon 2 1 6 2 7 4 4 6 8 5 6 6 7 7 7 12 5 0 95

Cataluna 8 6 3 6 6 15 16 9 13 11 7 19 15 16 13 14 7 0 184

Valencia 1 3 3 7 5 12 11 10 12 13 17 10 8 8 19 16 9 2 166

Extremadura 0 0 0 1 1 2 2 0 0 3 1 0 2 7 5 3 1 0 28

Galicia 1 1 3 0 0 11 3 5 8 7 1 7 6 5 3 2 0 0 63

Madrid 4 4 5 7 5 7 9 10 16 7 12 8 13 16 8 8 13 0 152

Murcia 1 0 0 0 1 0 1 0 2 3 2 2 3 1 6 2 3 0 27

Navarra 1 0 0 2 1 0 2 2 1 0 0 0 4 2 0 0 0 0 15

Pais Vasco 2 3 1 6 4 8 5 8 8 9 7 6 11 10 11 8 4 1 112

La Rioja 2 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 8

TOTAL 30 29 27 36 51 79 76 73 95 79 73 78 101 95 96 99 71 5 1193

• Por año diagnóstico. Existe 1 caso más sin año diagnóstico

REGISTRO ESPAÑOL DE EETH

1993-febrero 2010

ECJ = 957

vECJ = 5

IFL = 44

GSS = 2

Esporadico = 905

Familiar = 46

Yatrogenico = 6

* Existen 2 casos mas con diagnóstico pendiente de clasificación

ALSO, ON PAGE 14, NOTE THE HIGH INCIDENCE IN THIS SAME AREA ;

Número de casos de Insomnio Familiar Letal por CA. 1993-febrero 2010

HIGH INCIENCE RATE AT 18 CASES


please see full text ;


REGISTRO NACIONAL DE ENCEFALOPATÍAS ESPONGIFORMES TRANSMISIBLES HUMANAS C.N.E y Servicios de Vigilancia Epidemiológica de CCAA (Situación a 15 de febrero de 2010)


http://www.isciii.es/htdocs/pdf/DatosRegistroCreutzfeldJacob2.pdf



The EMBO Journal (2002) 21, 6358 - 6366 doi:10.1093/emboj/cdf653

BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein

Emmanuel A. Asante1, Jacqueline M. Linehan1, Melanie Desbruslais1, Susan Joiner1, Ian Gowland1, Andrew L. Wood1, Julie Welch1, Andrew F. Hill1, Sarah E. Lloyd1, Jonathan D.F. Wadsworth1 and John Collinge1

1.MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College, Queen Square, London WC1N 3BG, UK Correspondence to:

John Collinge, E-mail: j.collinge@prion.ucl.ac.uk

Received 1 August 2002; Accepted 17 October 2002; Revised 24 September 2002


--------------------------------------------------------------------------------


Abstract

Variant Creutzfeldt–Jakob disease (vCJD) has been recognized to date only in individuals homozygous for methionine at PRNP codon 129. Here we show that transgenic mice expressing human PrP methionine 129, inoculated with either bovine spongiform encephalopathy (BSE) or variant CJD prions, may develop the neuropathological and molecular phenotype of vCJD, consistent with these diseases being caused by the same prion strain. Surprisingly, however, BSE transmission to these transgenic mice, in addition to producing a vCJD-like phenotype, can also result in a distinct molecular phenotype that is indistinguishable from that of sporadic CJD with PrPSc type 2. These data suggest that more than one BSE-derived prion strain might infect humans; it is therefore possible that some patients with a phenotype consistent with sporadic CJD may have a disease arising from BSE exposure.

Keywords:BSE, Creutzfeldt–Jakob disease, prion, transgenic


http://www.nature.com/emboj/journal/v21/n23/abs/7594869a.html


Monday, May 19, 2008

SPORADIC CJD IN FARMERS, FARMERS WIVES, FROM FARMS WITH BSE HERD AND ABATTOIRS

http://bseinquiry.blogspot.com/


Sunday, August 10, 2008

A New Prionopathy OR more of the same old BSe and sporadic CJD

http://creutzfeldt-jakob-disease.blogspot.com/2008/08/new-prionopathy-or-more-of-same-old-bse.html


Atypical/Nor98 scrapie in the Basque Country: a case report of eight outbreaks

BMC Veterinary Research 2010, 6:17 doi:10.1186/1746-6148-6-17

http://www.biomedcentral.com/content/pdf/1746-6148-6-17.pdf


Sunday, March 28, 2010

Atypical/Nor98 scrapie in the Basque Country: a case report of eight outbreaks

http://nor-98.blogspot.com/2010/03/atypicalnor98-scrapie-in-basque-country.html


Wednesday, March 3, 2010

NOR-98 ATYPICAL SCRAPIE USA 4 CASES DETECTED JANUARY 2010

Greetings,

Unusual event if you consider the officials hypothisis that Nor-98 atypical scrapie is a spontaneous event. seems there was a great deal of spontaneous mutations for this time period ;-)...TSS

http://nor-98.blogspot.com/2010/03/nor-98-atypical-scrapie-usa-4-cases.html


Thursday, March 11, 2010

CANADA TYPICAL AND ATYPICAL SCRAPIE REPORT TO MARCH 2010

http://nor-98.blogspot.com/2010/03/canada-typical-and-atypical-scrapie.html


Monday, November 30, 2009

USDA AND OIE COLLABORATE TO EXCLUDE ATYPICAL SCRAPIE NOR-98 ANIMAL HEALTH CODE

http://nor-98.blogspot.com/2009/11/usda-and-oie-collaborate-to-exclude.html


Monday, December 14, 2009

Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease Are Encoded by Distinct Prion Types

hmmm, this is getting interesting now...

Sporadic CJD type 1 and atypical/ Nor98 scrapie are characterized by fine (reticular) deposits,

see also ;

All of the Heidenhain variants were of the methionine/ methionine type 1 molecular subtype.

http://cjdusa.blogspot.com/2009/09/co-existence-of-scrapie-prion-protein.html


see full text ;

Monday, December 14, 2009

Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease Are Encoded by Distinct Prion Types

http://nor-98.blogspot.com/2009/12/similarities-between-forms-of-sheep.html


TSS

Labels: , ,