Monday, September 11, 2023

Professor John Collinge on tackling prion diseases sCJD around 1 in 5000 deaths worldwide

Professor John Collinge on tackling prion diseases sCJD accounts for around 1 in 5000 deaths worldwide

“The best-known human prion disease is sporadic Creutzfeldt-Jakob disease (sCJD), a rapidly progressive dementia which accounts for around 1 in 5000 deaths worldwide.”


Professor John Collinge on tackling prion diseases


Professor John Collinge is Director of the MRC Prion Unit and also directs the NHS National Prion Clinic at the adjacent National Hospital for Neurology and Neurosurgery.


John Collinge What are prions, why are they important, and how might they help us develop treatments for neurodegenerative conditions like dementia?


Prions are lethal pathogens that cause neurodegenerative diseases of humans and other mammals.


The best-known human prion disease is sporadic Creutzfeldt-Jakob disease (sCJD), a rapidly progressive dementia which accounts for around 1 in 5000 deaths worldwide. In sharp distinction to all other infectious agents, prions lack their own DNA or RNA genome and consist of polymers of a misfolded form of a normal cellular protein (the prion protein or PrP) which form amyloid fibrils.


These fibres grow by addition of PrP molecules at their ends and they eventually fragment producing more prion particles which continue this process and spread throughout the brain. The final proof of the once controversial “protein-only hypothesis” of prions came with the determination of the structure of infectious prions at near atomic resolution by cryogenic electron microscopy by ourselves and US colleagues in the last few years.


The normal cellular prion proteins are very similar between different species of mammals and therefore a prion infection from one species can sometimes infect another species. This is what happened with the prion disease of cattle, bovine spongiform encephalopathy (BSE) in the 1990’s which caused a new human prion disease known as variant Creutzfeldt-Jakob disease (vCJD) and led to the BSE crisis in the UK, EU and other countries.


While human prion diseases are thankfully rare, there are common prion diseases of other species, for example scrapie in sheep and goats worldwide and chronic wasting disease in deer in North America. While prions were first thought to be unique to these rare neurological diseases, it became clear that the molecular process was of far wider relevance with for example the recognition of several different proteins in yeast that could form prions.


Most importantly with respect to neurodegeneration and dementia in humans, it has been established that similar so-called “prion-like” mechanisms are involved in much commoner conditions including Alzheimer’s and Parkinson’s diseases. In Alzheimer’s disease (AD) for example, two proteins in the brain, amyloid-beta and tau can form self-propagating assemblies which spread in the brain. Indeed, we reported in two articles in Nature that the amyloid-beta pathology seen in AD can be transmissible between humans in rare circumstances causing the newly recognised condition iatrogenic cerebral amyloid angiopathy.


There is accumulating evidence also for iatrogenic AD. Understanding prion biology, and in particular how propagation of prions leads to neurodegeneration, is therefore of central research importance in medicine. Many years ago, we demonstrated that targeting the production of the normal cellular prion protein completely halted the progression of neurodegeneration (and indeed even reversed early pathological changes) in laboratory mice. This work has underpinned multiple efforts to develop rational treatments for prion and other neurodegenerative diseases.


What first attracted you to the area of prion diseases?


I first became involved in this field while working as a graduate student applying early molecular genetic methods to study neuropsychiatric diseases and was involved in the first description of mutations in the prion protein gene in the late 1980s in what are now known as the inherited prion diseases.


As it was already known that brain tissue from patients who died from some of these genetic conditions could transmit disease when inoculated into laboratory animals, it seemed to me highly likely that some version of the then intensely controversial “protein-only hypothesis” was likely to be correct: this had major implications in pathobiology.


I went on to show that being heterozygous for a common human prion protein polymorphism had a profound effect on susceptibility to CJD; I considered this entirely consistent with a protein-only agent and this led to further work studying the genetics of prion disease.


It seemed to me at the time that these early genetic insights, albeit in a rare disease, provided a powerful way in to study the fundamental basis of neurodegeneration. Of course, the evolving concerns about BSE in the early 1990’s also focussed my mind on the specific public and animal health risks posed by prions.


You led the UK’s first clinical trial in CJD, the largest yet conducted internationally. Can you tell us about this? 


I was asked in 1997 by Medical Research Council (MRC) at the request of UK Government to establish and lead an MRC Unit to focus on understanding prion diseases and to ultimately develop treatments for them.


At the time it was unknown how many people would develop vCJD following the widespread dietary exposure of the UK population to BSE prions and the possibility that this may eventually affect hundreds of thousands could not then be excluded.


An early proposal (by Dr Prusiner at UCSF) for a treatment for CJD was the anti-malarial drug quinacrine based on early work in prion-infected cell cultures. We were asked by the Chief Medical Officer to establish a clinical trial and did so in collaboration with the MRC Clinical Trials Unit also based at UCL.


While the MRC PRION-1 trial, as is was called, did not show any benefit of quinacrine, we did learn a great deal about how best to conduct a clinical trial in CJD in conjunction with patients and families affected by these terrible conditions.


This lead on to the formation of the National Prion Monitoring Cohort (NPMC) to study the natural history of prion diseases and to develop better clinical scales and biomarkers, and earlier diagnosis, to facilitate future clinical trials. In particular, we reasoned that having a large longitudinal data set would allow us to conduct adequately powered efficacy trials by comparison of treated patients with historical controls rather that using a more classical placebo-controlled study which was understandably unacceptable to patients and their families given the rapid and invariably fatal progression of these diseases.


The NPMC has been extremely successful with the strong support of the patient community and has recruited over 1100 patients to date, by far the largest dataset worldwide, and has enabled development and validation of multiple clinical scales and blood and CSF biomarkers.


What in your opinion have been some of the most important findings of your research to date?


Our early work established and characterised the inherited prion diseases and genetic susceptibility to acquired and sporadic prion disease, and pioneered diagnostic and presymptomatic genetic testing of neurodegenerative disease.


Many further genetic advances followed. Prions exist in multiple strain types and we developed molecular strain typing of prions which we applied in 1996 to first demonstrate that vCJD was caused by the same prion strain as cattle BSE, a finding of critical public and animal health significance at the time.


We characterised the pathogenesis of vCJD to inform public health risk assessments, developed the first blood test for vCJD and effective means to prion sterilise surgical instruments. We proposed the now widely accepted “conformational selection hypothesis” to explain the relationship between prion strains and intermammalian transmission barriers and proposed that prion strains constitute a “cloud” under host selection rather than a molecular clone.


Importantly, we described subclinical prion infections in which animals lived a normal lifespan despite harbouring high levels of prions and went on to study the kinetics of prion propagation in vivo and showed that propagation and neurotoxicity occur in two distinct mechanistic phases with pathology only developing after prion levels had plateaued in the brain.


We subsequently confirmed that prions themselves are not directly neurotoxic. These insights may be fundamental to understanding other diseases involving propagation and spread of assemblies of misfolded proteins, notably amyloid-beta and tau in AD.


Our discovery of human transmission of amyloid-beta pathology, mentioned above, in individuals treated many years earlier in childhood with human cadaver-derived pituitary growth hormone (c-hGH) accidentally contaminated with amyloid-beta seeds (prions) has wide implications for understanding, preventing and treating neurodegenerative diseases.


We defined iatrogenic cerebral amyloid angiopathy as a new disease, with relevance to Alzheimer’s disease and public health. Iatrogenic AD is likely to be recognised in the cohort of c-hGH recipients as they age further. Our demonstration that reducing prion expression during neuroinvasive prion disease in laboratory mice prevented onset, and reverses early pathology, produced a proof of principle of therapeutically targeting prion protein.


This led to our development of a biopharmaceutical which we have used to treat CJD. Recently, we have described the elusive structural basis of prion strain diversity: how prions can encode information in a non-Mendelian manner by determination of near atomic resolution structures of multiple prion stains by cryogenic electron microscopy. 


In addition, we are proud of our long term field studies on the epidemic human prion disease kuru in the Eastern Highlands of Province of Papua New Guinea (PNG), in collaboration with the PNG Institute for Medical Research and the affected communities, which led to major insights including establishing the range of possible incubation periods of human prion infections (documenting cases with incubations over 50 years) and discovery of a novel prion protein variant selected by the epidemic which we demonstrated provides complete protection against prion infection and disease and the molecular structural basis of which we have recently characterised. 


To what extent do you think we are entering a new era when it comes to developing drugs that could be used to prevent, or even reverse, neurodegenerative diseases?


Thankfully we are entering a time when disease-modifying treatments for neurodegenerative diseases are becoming feasible and indeed first-generation agents have arrived, but we cannot yet prevent, halt or reverse neurodegeneration.


Our own work validating cellular prion protein as a therapeutic target led us to develop a humanised monoclonal antibody with high affinity for cellular PrP and this has been used to treat six patients with CJD at UCLH. We consider the encouraging results justify a formal clinical trial and are seeking funding support for this at present.


Our therapeutic strategy has been to target normal cellular PrP itself, the substrate for prion propagation, and not the disease-related assemblies of misfolded PrP that accumulate during disease. We reasoned, given the diversity of these species, that drugs binding prions themselves would lead to the rapid development of resistance and indeed this has been shown to be the case with drugs developed elsewhere.


There may be important lessons here for other neurodegenerative diseases. For example, this may be critical in determining whether monoclonal antibody drugs targeting amyloid-beta fibrils or other assemblies, which also exist as structural polymorphs, have a sustained therapeutic effect or result in strain selection and evolution of resistant sub-strains as in prion diseases.


A number of pharmaceutical and biotech companies are however developing gene targeting methods, conceptually analogous to those we demonstrated many years ago block prion pathogenesis, to reduce expression of proteins implicated in various neurodegenerative diseases. Given the complexity and diversity of AD, in which multiple proteinopathies are involved, it is likely that effective treatments are going to require a cocktail of drugs hitting multiple targets.


Another key consideration is the importance of accurate diagnosis and early treatment, not only for the obvious need to intervene before irreversible brain cell loss has occurred, but because at the stage where significant cell death (with release of toxic materials) is occurring, these secondary non-specific neurodegenerative processes may dominate and be unresponsive to the specific targeted therapies. The ultimate aim must be to identify these pathogenic processes very early (ideally pre-clinically) and intervene to delay, and eventually prevent, clinical progression or onset.


https://www.ucl.ac.uk/brain-sciences/dementia-ucl-priority/professor-john-collinge-tackling-prion-diseases


Alzheimer's disease, iatrogenic transmission, what if?


let's not forget the elephant in the room. curing Alzheimer's would be a great and wonderful thing, but for starters, why not start with the obvious, lets prove the cause or causes, and then start to stop that. think iatrogenic, friendly fire, or the pass it forward mode of transmission. think medical, surgical, dental, tissue, blood, related transmission. think transmissible spongiform encephalopathy aka tse prion disease aka mad cow type disease... 


Commentary: Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy


http://journals.plos.org/plosone/article/comment?id=info:doi/10.1371/annotation/933cc83a-a384-45c3-b3b2-336882c30f9d


http://journals.plos.org/plosone/article/comments?id=10.1371/journal.pone.0111492


http://journals.plos.org/plosone/article/comment?id=10.1371/annotation/933cc83a-a384-45c3-b3b2-336882c30f9d


https://www.frontiersin.org/articles/10.3389/fnagi.2016.00005/full


Self-Propagative Replication of Ab Oligomers Suggests Potential Transmissibility in Alzheimer Disease 


*** Singeltary comment PLoS *** 


Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ? 


Posted by flounder on 05 Nov 2014 at 21:27 GMT 


Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ? 


Background


Alzheimer’s disease and Transmissible Spongiform Encephalopathy disease have both been around a long time, and was discovered in or around the same time frame, early 1900’s. Both diseases are incurable and debilitating brain disease, that are in the end, 100% fatal, with the incubation/clinical period of the Alzheimer’s disease being longer (most of the time) than the TSE prion disease. Symptoms are very similar, and pathology is very similar.


Methods


Through years of research, as a layperson, of peer review journals, transmission studies, and observations of loved ones and friends that have died from both Alzheimer’s and the TSE prion disease i.e. Heidenhain Variant Creutzfelt Jakob Disease CJD.


Results


I propose that Alzheimer’s is a TSE disease of low dose, slow, and long incubation disease, and that Alzheimer’s is Transmissible, and is a threat to the public via the many Iatrogenic routes and sources. It was said long ago that the only thing that disputes this, is Alzheimer’s disease transmissibility, or the lack of. The likelihood of many victims of Alzheimer’s disease from the many different Iatrogenic routes and modes of transmission as with the TSE prion disease.


Conclusions


There should be a Global Congressional Science round table event set up immediately to address these concerns from the many potential routes and sources of the TSE prion disease, including Alzheimer’s disease, and a emergency global doctrine put into effect to help combat the spread of Alzheimer’s disease via the medical, surgical, dental, tissue, and blood arena’s. All human and animal TSE prion disease, including Alzheimer’s should be made reportable in every state, and Internationally, WITH NO age restrictions. Until a proven method of decontamination and autoclaving is proven, and put forth in use universally, in all hospitals and medical, surgical arena’s, or the TSE prion agent will continue to spread. IF we wait until science and corporate politicians wait until politics lets science _prove_ this once and for all, and set forth regulations there from, we will all be exposed to the TSE Prion agents, if that has not happened already.


http://www.plosone.org/annotation/listThread.action?root=82860


https://betaamyloidcjd.blogspot.com/2021/


IN CONFIDENCE


5 NOVEMBER 1992


TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES


[9. Whilst this matter is not at the moment directly concerned with the iatrogenic CJD cases from hgH, there remains a possibility of litigation here, and this presents an added complication. 


There are also results to be made available shortly 


(1) concerning a farmer with CJD who had BSE animals, 


(2) on the possible transmissibility of Alzheimer’s and 


(3) a CMO letter on prevention of iatrogenic CJD transmission in neurosurgery, all of which will serve to increase media interest.]


https://web.archive.org/web/20170126060344/http://collections.europarchive.org/tna/20080102232842/http://www.bseinquiry.gov.uk/files/yb/1992/11/04001001.pdf


https://web.archive.org/web/20040315075058/http://www.bseinquiry.gov.uk/files/yb/1992/12/16005001.pdf


https://web.archive.org/web/20040315075058/www.bseinquiry.gov.uk/files/yb/1992/12/16005001.pdf


re-Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy 


Nature 525, 247?250 (10 September 2015) doi:10.1038/nature15369 Received 26 April 2015 Accepted 14 August 2015 Published online 09 September 2015 Updated online 11 September 2015 Erratum (October, 2015)


https://www.nature.com/articles/nature15369


Singeltary Comment at very bottom of this Nature publishing;


re-Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy


I would kindly like to comment on the Nature Paper, the Lancet reply, and the newspaper articles.


First, I applaud Nature, the Scientist and Authors of the Nature paper, for bringing this important finding to the attention of the public domain, and the media for printing said findings.


Secondly, it seems once again, politics is getting in the way possibly of more important Transmissible Spongiform Encephalopathy TSE Prion scientific findings. findings that could have great implications for human health, and great implications for the medical surgical arena. but apparently, the government peer review process, of the peer review science, tries to intervene again to water down said disturbing findings.


where have we all heard this before? it's been well documented via the BSE Inquiry. have they not learned a lesson from the last time?


we have seen this time and time again in England (and other Country's) with the BSE mad cow TSE Prion debacle.


That 'anonymous' Lancet editorial was disgraceful. The editor, Dick Horton is not a scientist.


The pituitary cadavers were very likely elderly and among them some were on their way to CJD or Alzheimer's. Not a bit unusual. Then the recipients ? 


who got pooled extracts injected from thousands of cadavers ? were 100% certain to have been injected with both seeds. No surprise that they got both diseases going after thirty year incubations.


That the UK has a "system in place to assist science journalists" to squash embargoed science reports they find 'alarming' is pathetic.


Sounds like the journalists had it right in the first place: 'Alzheimer's may be a transmissible infection' in The Independent to 'You can catch Alzheimer's' in The Daily Mirror or 'Alzheimer's bombshell' in The Daily Express


if not for the journalist, the layperson would not know about these important findings.


where would we be today with sound science, from where we were 30 years ago, if not for the cloak of secrecy and save the industry at all cost mentality?


when you have a peer review system for science, from which a government constantly circumvents, then you have a problem with science, and humans die.


to date, as far as documented body bag count, with all TSE prion named to date, that count is still relatively low (one was too many in my case, Mom hvCJD), however that changes drastically once the TSE Prion link is made with Alzheimer's, the price of poker goes up drastically.


so, who makes that final decision, and how many more decades do we have to wait?


the iatrogenic mode of transmission of TSE prion, the many routes there from, load factor, threshold from said load factor to sub-clinical disease, to clinical disease, to death, much time is there to spread a TSE Prion to anywhere, but whom, by whom, and when, do we make that final decision to do something about it globally? how many documented body bags does it take? how many more decades do we wait? how many names can we make up for one disease, TSE prion?


Professor Collinge et al, and others, have had troubles in the past with the Government meddling in scientific findings, that might in some way involve industry, never mind human and or animal health.


FOR any government to continue to circumvent science for monetary gain, fear factor, or any reason, shame, shame on you.


in my opinion, it's one of the reasons we are at where we are at to date, with regards to the TSE Prion disease science i.e. money, industry, politics, then comes science, in that order.


greed, corporate, lobbyist there from, and government, must be removed from the peer review process of sound science, it's bad enough having them in the pharmaceutical aspect of healthcare policy making, in my opinion.


my mother died from confirmed hvCJD, and her brother (my uncle) Alzheimer's of some type (no autopsy?). just made a promise, never forget, and never let them forget, before I do.


I kindly wish to remind the public of the past, and a possible future we all hopes never happens again. ...


[9. Whilst this matter is not at the moment directly concerned with the iatrogenic CJD cases from hgH, there remains a possibility of litigation here, and this presents an added complication. There are also results to be made available shortly (1) concerning a farmer with CJD who had BSE animals, (2) on the possible transmissibility of Alzheimer's and (3) a CMO letter on prevention of iatrogenic CJD transmission in neurosurgery, all of which will serve to increase media interest.]


Singeltary Comment at very bottom of this Nature publishing;


https://www.nature.com/articles/nature15369#article-comments


https://www.nature.com/articles/nature15369


Saturday, March 18, 2023 


Autoclave treatment fails to completely inactivate DLB alpha-synuclein seeding activity 


https://alpha-synuclein.blogspot.com/2023/03/autoclave-treatment-fails-to-completely.html


Prusiner et al, then and now!


https://www.nejm.org/doi/full/10.1056/NEJM200105173442006


https://www.pnas.org/doi/10.1073/pnas.2220984120


2001 Singeltary on CJD

February 14, 2001


Diagnosis and Reporting of Creutzfeldt-Jakob Disease


Terry S. Singeltary, Sr


Author Affiliations


JAMA. 2001;285(6):733-734. doi:10-1001/pubs.JAMA-ISSN-0098-7484-285-6-jlt0214 


To the Editor: In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.


https://jamanetwork.com/journals/jama/article-abstract/1031186


RE-Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States


Terry S. Singeltary, retired (medically), CJD WATCH


Submitted March 26, 2003


I lost my mother to hvCJD (Heidenhain Variant CJD). I would like to comment on the CDC's attempts to monitor the occurrence of emerging forms of CJD. Asante, Collinge et al [1] have reported that BSE transmission to the 129-methionine genotype can lead to an alternate phenotype that is indistinguishable from type 2 PrPSc, the commonest sporadic CJD. However, CJD and all human TSEs are not reportable nationally. CJD and all human TSEs must be made reportable in every state and internationally. I hope that the CDC does not continue to expect us to still believe that the 85%+ of all CJD cases which are sporadic are all spontaneous, without route/source. We have many TSEs in the USA in both animal and man. CWD in deer/elk is spreading rapidly and CWD does transmit to mink, ferret, cattle, and squirrel monkey by intracerebral inoculation. With the known incubation periods in other TSEs, oral transmission studies of CWD may take much longer. Every victim/family of CJD/TSEs should be asked about route and source of this agent. To prolong this will only spread the agent and needlessly expose others. In light of the findings of Asante and Collinge et al, there should be drastic measures to safeguard the medical and surgical arena from sporadic CJDs and all human TSEs. I only ponder how many sporadic CJDs in the USA are type 2 PrPSc?


https://n.neurology.org/content/re-monitoring-occurrence-emerging-forms-creutzfeldt-jakob-disease-united-states


Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States 2003 revisited 2009


August 10, 2009


Greetings,


I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. North America seems to have the most species with documented Transmissible Spongiform Encephalopathy's, most all of which have been rendered and fed back to food producing animals and to humans for years. If you look at the statistics, sporadic CJD seems to be rising in the USA, and has been, with atypical cases of the sCJD. I find deeply disturbing in the year of 2009, that Human Transmissible Spongiform Encephalopathy of any strain and or phenotype, of all age groups, and I stress all age groups, because human TSE's do not know age, and they do not know borders. someone 56 years old, that has a human TSE, that has surgery, can pass this TSE agent on i.e. friendly fire, and or passing it forward, and there have been documented nvCJD in a 74 year old. Remembering also that only sporadic CJD has been documented to transmit via iatrogenic routes, until recently with the 4 cases of blood related transmission, of which the origin is thought to be nvCJD donors. However most Iatrogenic CJD cases are nothing more than sporadic CJD, until the source is proven, then it becomes Iatrogenic. An oxymoron of sorts, because all sporadic CJD is, are multiple forms, or strains, or phenotypes of Creutzfeldt Jakob Disease, that the route and source and species have not been confirmed and or documented. When will the myth of the UKBSEnvCJD only theory be put to bed for good. This theory in my opinion, and the following there from, as the GOLD STANDARD, has done nothing more than help spread this agent around the globe. Politics and money have caused the terrible consequences to date, and the fact that TSEs are a slow incubating death, but a death that is 100% certain for those that are exposed and live long enough to go clinical. once clinical, there is no recourse, to date. 

But, while sub-clinical, how many can one exposed human infect? 

Can humans exposed to CWD and scrapie strains pass it forward as some form of sporadic CJD in the surgical and medical arenas? 

why must we wait decades and decades to prove this point, only to expose millions needlessly, only for the sake of the industries involved? 

would it not have been prudent from the beginning to just include all TSE's, and rule them out from there with transmission studies and change policies there from, as opposed to doing just the opposite? 

The science of TSE's have been nothing more than a political circus since the beginning, and for anyone to still believe in this one strain, one group of bovines, in one geographical location, with only one age group of human TSE i.e. nvCJD myth, for anyone to believe this today only enhances to spreading of these human and animal TSE's. This is exactly why we have been in this quagmire.


The ones that believe that there is a spontaneous CJD in 85%+ of all cases of human TSE, and the ones that do not believe that cattle can have this same phenomenon, are two of the same, the industry, and so goes the political science aspect of this tobacco and or asbestos scenario i.e. follow the money. I could go into all angles of this man made nightmare, the real facts and science, for instance, the continuing rendering technology and slow cooking with low temps that brewed this stew up, and the fact that THE USA HAD THIS TECHNOLOGY FIRST AND SHIPPED IT TO THE U.K. SOME 5 YEARS BEFORE THE U.S. STARTED USING THE SAME TECHNOLOGY, to save on fuel cost. This is what supposedly amplified the TSE agent via sheep scrapie, and spread via feed in the U.K. bovine, and other countries exporting the tainted product. BUT most everyone ignores this fact, and the fact that the U.S. has been recycling more TSE, from more species with TSEs, than any other country documented, but yet, it's all spontaneous, and the rise in sporadic CJD in the U.S. is a happenstance of bad luck ??? I respectfully disagree. To top that all off, the infamous BSE-FIREWALL that the USDA always brags about was nothing more than ink on paper, and I can prove this. YOU can ignore it, but this is FACT (see source, as late as 2007, in one recall alone, some 10,000,000 MILLION POUNDS OF BANNED MAD COW FEED WENT OUT INTO COMMERCE TO BE FED OUT, and most was never recovered. This was banned blood laced, meat and bone meal. 2006 was a banner year for banned mad cow protein going into commerce in the U.S. (see source of FDA feed ban warning letter below). I stress that the August 4, 1997 USA mad cow feed ban and this infamous BSE firewall, was nothing more than ink on paper, it was never enforceable.


I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route. This would further have to be broken down to strain of species and then the route of transmission would further have to be broken down. Accumulation and Transmission are key to the threshold from sub- clinical to clinical disease, and key to all this, is to stop the amplification and transmission of this agent, the spreading of, no matter what strain. In my opinion, to continue with this myth that the U.K. strain of BSE one strain TSE in cows, and the nv/v CJD one strain TSE humans, and the one geographical location source i.e. U.K., and that all the rest of human TSE are just one single strain i.e. sporadic CJD, a happenstance of bad luck that just happens due to a twisted protein that just twisted the wrong way, IN 85%+ OF ALL HUMAN TSEs, when to date there are 6 different phenotypes of sCJD, and growing per Gambetti et al, and that no other animal TSE transmits to humans ??? With all due respect to all Scientist that believe this, I beg to differ. To continue with this masquerade will only continue to spread, expose, and kill, who knows how many more in the years and decades to come. ONE was enough for me, My Mom, hvCJD i.e. Heidenhain Variant CJD, DOD 12/14/97 confirmed, which is nothing more than another mans name added to CJD, like CJD itself, Jakob and Creutzfeldt, or Gerstmann-Straussler-Scheinker syndrome, just another CJD or human TSE, named after another human. WE are only kidding ourselves with the current diagnostic criteria for human and animal TSE, especially differentiating between the nvCJD vs the sporadic CJD strains and then the GSS strains and also the FFI fatal familial insomnia strains or the ones that mimics one or the other of those TSE? Tissue infectivity and strain typing of the many variants of the human and animal TSEs are paramount in all variants of all TSE. There must be a proper classification that will differentiate between all these human TSE in order to do this. With the CDI and other more sensitive testing coming about, I only hope that my proposal will some day be taken seriously. ...


please see history, and the ever evolving TSE science to date ;


Saturday, June 13, 2009


Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States 2003 revisited 2009


https://journals.plos.org/plosone/article/comment?id=10.1371/annotation/04ce2b24-613d-46e6-9802-4131e2bfa6fd


Singeltary 2000


BMJ 2000; 320 doi: https://doi.org/10.1136/bmj.320.7226.8/b (Published 01 January 2000) Cite this as: BMJ 2000;320:8


02 January 2000 Terry S Singeltary retired


Rapid Response: 


U.S. Scientist should be concerned with a CJD epidemic in the U.S., as well... 


In reading your short article about 'Scientist warn of CJD epidemic' news in brief Jan. 1, 2000. I find the findings in the PNAS old news, made famous again. Why is the U.S. still sitting on their butts, ignoring the facts? We have the beginning of a CJD epidemic in the U.S., and the U.S. Gov. is doing everything in it's power to conceal it.


The exact same recipe for B.S.E. existed in the U.S. for years and years. In reading over the Qualitative Analysis of BSE Risk Factors-1, this is a 25 page report by the USDA:APHIS:VS. It could have been done in one page. The first page, fourth paragraph says it all;


"Similarities exist in the two countries usage of continuous rendering technology and the lack of usage of solvents, however, large differences still remain with other risk factors which greatly reduce the potential risk at the national level."


Then, the next 24 pages tries to down-play the high risks of B.S.E. in the U.S., with nothing more than the cattle to sheep ratio count, and the geographical locations of herds and flocks. That's all the evidence they can come up with, in the next 24 pages.


Something else I find odd, page 16;


"In the United Kingdom there is much concern for a specific continuous rendering technology which uses lower temperatures and accounts for 25 percent of total output. This technology was _originally_ designed and imported from the United States. However, the specific application in the production process is _believed_ to be different in the two countries."


A few more factors to consider, page 15;


"Figure 26 compares animal protein production for the two countries. The calculations are based on slaughter numbers, fallen stock estimates, and product yield coefficients. This approach is used due to variation of up to 80 percent from different reported sources. At 3.6 million tons, the United States produces 8 times more animal rendered product than the United Kingdom."


"The risk of introducing the BSE agent through sheep meat and bone meal is more acute in both relative and absolute terms in the United Kingdom (Figures 27 and 28). Note that sheep meat and bone meal accounts for 14 percent, or 61 thousand tons, in the United Kingdom versus 0.6 percent or 22 thousand tons in the United States. For sheep greater than 1 year, this is less than one-tenth of one percent of the United States supply."


"The potential risk of amplification of the BSE agent through cattle meat and bone meal is much greater in the United States where it accounts for 59 percent of total product or almost 5 times more than the total amount of rendered product in the United Kingdom."


Considering, it would only take _one_ scrapie infected sheep to contaminate the feed. Considering Scrapie has run rampant in the U.S. for years, as of Aug. 1999, 950 scrapie infected flocks. Also, Considering only one quarter spoonful of scrapie infected material is lethal to a cow.


Considering all this, the sheep to cow ration is meaningless. As I said, it's 24 pages of B.S.e.


To be continued...


Terry S. Singeltary Sr. Bacliff, Texas USA


Competing interests: No competing interests


https://www.bmj.com/rapid-response/2011/10/28/us-scientist-should-be-concerned-cjd-epidemic-us-well


doi:10.1016/S1473-3099(03)00715-1 Copyright © 2003 Published by Elsevier Ltd. Newsdesk


Tracking spongiform encephalopathies in North America


Xavier Bosch


Available online 29 July 2003. 


Volume 3, Issue 8, August 2003, Page 463 


Volume 3, Number 8 01 August 2003


Newsdesk


Tracking spongiform encephalopathies in North America


Xavier Bosch


My name is Terry S Singeltary Sr, and I live in Bacliff, Texas. I lost my mom to hvCJD (Heidenhain variant CJD) and have been searching for answers ever since. What I have found is that we have not been told the truth. CWD in deer and elk is a small portion of a much bigger problem.


49-year-old Singeltary is one of a number of people who have remained largely unsatisfied after being told that a close relative died from a rapidly progressive dementia compatible with spontaneous Creutzfeldt-Jakob disease (CJD). So he decided to gather hundreds of documents on transmissible spongiform encephalopathies (TSE) and realised that if Britons could get variant CJD from bovine spongiform encephalopathy (BSE), Americans might get a similar disorder from chronic wasting disease (CWD) the relative of mad cow disease seen among deer and elk in the USA. Although his feverish search did not lead him to the smoking gun linking CWD to a similar disease in North American people, it did uncover a largely disappointing situation.


Singeltary was greatly demoralised at the few attempts to monitor the occurrence of CJD and CWD in the USA. Only a few states have made CJD reportable. Human and animal TSEs should be reportable nationwide and internationally, he complained in a letter to the Journal of the American Medical Association (JAMA 2003; 285: 733). I hope that the CDC does not continue to expect us to still believe that the 85% plus of all CJD cases which are sporadic are all spontaneous, without route or source.


Until recently, CWD was thought to be confined to the wild in a small region in Colorado. But since early 2002, it has been reported in other areas, including Wisconsin, South Dakota, and the Canadian province of Saskatchewan. Indeed, the occurrence of CWD in states that were not endemic previously increased concern about a widespread outbreak and possible transmission to people and cattle.


To date, experimental studies have proven that the CWD agent can be transmitted to cattle by intracerebral inoculation and that it can cross the mucous membranes of the digestive tract to initiate infection in lymphoid tissue before invasion of the central nervous system. Yet the plausibility of CWD spreading to people has remained elusive.


Part of the problem seems to stem from the US surveillance system. CJD is only reported in those areas known to be endemic foci of CWD. Moreover, US authorities have been criticised for not having performed enough prionic tests in farm deer and elk.


Although in November last year the US Food and Drug Administration issued a directive to state public-health and agriculture officials prohibiting material from CWD-positive animals from being used as an ingredient in feed for any animal species, epidemiological control and research in the USA has been quite different from the situation in the UK and Europe regarding BSE.


Getting data on TSEs in the USA from the government is like pulling teeth, Singeltary argues. You get it when they want you to have it, and only what they want you to have.


Norman Foster, director of the Cognitive Disorders Clinic at the University of Michigan (Ann Arbor, MI, USA), says that current surveillance of prion disease in people in the USA is inadequate to detect whether CWD is occurring in human beings; adding that, the cases that we know about are reassuring, because they do not suggest the appearance of a new variant of CJD in the USA or atypical features in patients that might be exposed to CWD. However, until we establish a system that identifies and analyses a high proportion of suspected prion disease cases we will not know for sure. The USA should develop a system modelled on that established in the UK, he points out.


Ali Samii, a neurologist at Seattle VA Medical Center who recently reported the cases of three hunters two of whom were friends who died from pathologically confirmed CJD, says that at present there are insufficient data to claim transmission of CWD into humans; adding that [only] by asking [the questions of venison consumption and deer/elk hunting] in every case can we collect suspect cases and look into the plausibility of transmission further. Samii argues that by making both doctors and hunters more aware of the possibility of prions spreading through eating venison, doctors treating hunters with dementia can consider a possible prion disease, and doctors treating CJD patients will know to ask whether they ate venison.


CDC spokesman Ermias Belay says that the CDC will not be investigating the [Samii] cases because there is no evidence that the men ate CWD-infected meat. He notes that although the likelihood of CWD jumping the species barrier to infect humans cannot be ruled out 100% and that [we] cannot be 100% sure that CWD does not exist in humans& the data seeking evidence of CWD transmission to humans have been very limited. 


http://www.thelancet.com/journals/laninf/article/PIIS1473309903007151/fulltext


Singeltary 2007


The Pathological Protein: Mad Cow, Chronic Wasting, and Other Deadly Prion Diseases 


by Philip Yam 


''Answering critics like Terry Singeltary, who feels that the US undercounts CJD, Schonberger _conceded_ that the current surveillance system has errors but stated that most of the errors will be confined to the older population''...


Revisiting Sporadic CJD


It’s not hard to get Terry Singeltary going. “I have my conspiracy theories,” admitted the 49-year-old Texan.1 Singeltary is probably the nation’s most relentless consumer advocate when it comes to issues in prion diseases. He has helped families learn about the sickness and coordinated efforts with support groups such as CJD Voice and the CJD Foundation. He has also connected with others who are critical of the American way of handling the threat of prion diseases. Such critics include Consumers Union’s Michael Hansen, journalist John Stauber, and Thomas Pringle, who used to run the voluminous www.madcow.org Web site. These three lend their expertise to newspaper and magazine stories about prion diseases, and they usually argue that


223


prions represent more of a threat than people realize, and that the government has responded poorly to the dangers because it is more concerned about protecting the beef industry than people’s health.


Singeltary has similar inclinations, but unlike these men, he doesn’t have the professional credentials behind him. He is an 11th-grade dropout, a machinist who retired because of a neck injury sustained at work. But you might not know that from the vast stores of information in his mind and on his hard drive. Over the years, he has provided unacknowledged help to reporters around the globe, passing on files to such big-time players as The New York Times, Newsweek, and USA Today. His networking with journalists, activists, and concerned citizens has helped medical authorities make contact with suspected CJD victims. He has kept scientists informed with his almost daily posting of news items and research abstracts on electronic newsgroups, including the bulletin board on www.vegsource.com and the BSE-listserv run out of the University of Karlsruhe, Germany. His combative, blunt, opinionated style sometimes borders on obsessive ranting that earns praise from some officials and researchers but infuriates others—especially when he repeats his conviction that “the government has lied to us, the feed industry has lied to us—all over a buck.” As evidence, Singeltary cites the USDA’s testing approach, which targets downer cows and examined 19,900 of them in 2002. To him, the USDA should test 1 million cattle, because the incidence of BSE may be as low as one in a million, as it was in some European countries. That the U.S. does not, he thinks, is a sign that the government is really not interested in finding mad cows because of fears of an economic disaster.


Singeltary got into the field of transmissible spongiform encephalopathy in 1997, just after his mother died of sporadic CJD. She had an especially aggressive version—the Heidenhain variant—that first causes the patient to go blind and then to deteriorate rapidly. She died just ten weeks after her symptoms began. Singeltary, who said he had watched his grandparents die of cancer, considered her death by CJD to be much, much worse: “It’s something you never forget.” Her uncontrollable muscle twitching became so bad “that it took three of us to hold her one time,” Singeltary recalled. “She did everything but levitate in bed and spin her head.” Doctors originally diagnosed Alzheimer’s disease, but a postmortem neuropathological exam demanded by Singeltary revealed the true nature of her death.


224 CHAPTER 14


Classifying a disease as “sporadic” is another way for doctors to say they don’t know the cause. Normal prion proteins just turn rogue in the brain for no apparent reason. The term “sporadic” is often particularly hard for the victims’ families to accept, especially when the patient was previously in robust health. Maybe it was something in the water, they wonder, or in the air, or something they ate—the same questions CJD researchers tried to answer decades ago. The names “sporadic CJD” and “variant CJD” also confuse the public and raise suspicions that U.S. authorities are hiding something when they say there have been no native variant CJD cases in the country.


Singeltary suspected an environmental cause in his mother’s demise—a feeling reinforced a year later when a neighbor died of sporadic CJD. For years, the neighbor had been taking nutritional supplements that contained cow brain extracts. Researchers from the National Institutes of Health collected samples of the supplement, Singeltary recounted, and inoculated suspensions into mice. The mice remained healthy—which only means that those supplement samples tested were prion-free.


Scientists have made several attempts during the past few decades to find a connection between sporadic CJD and the environment. Often, these studies take the form of asking family members about CJD victims—their diet, occupation, medical history, hobbies, pets, and so forth—and comparing them with non-CJD subjects. Such case-control CJD studies have produced some intriguing—and sometimes contradictory—results. In 1985, Carleton Gajdusek and his NIH colleagues reported a correlation between CJD and eating a lot of roast pork, ham, hot dogs, and lamb, as well as rare meats and raw oysters.2 Yet they also recognized that the findings were preliminary and that more studies were needed.


Following up, Robert Will of the U.K. National CJD Surveillance Unit and others pooled this data with those from two other case-control studies on CJD (one from Japan and one from the U.K.). In particular, they figured the so-called odds ratio—calculated by dividing the frequency of a possible factor in the patient group by the frequency of the factor in the control group. An odds ratio greater than 1 means that the factor may be significant. In their study, Will and his collaborators found an increase of CJD in people who have worked as health professionals (odds ratio of 1.5) and people who have had contact with cows


Laying Odds 225


(1.7) and sheep (1.6). Unfortunately, those connections were not statistically significant: The numbers of pooled patients (117) and control subjects (333) were so small that the researchers felt the odds ratios needed to reach 2.5 to 8 (depending on the assumptions) before they could be deemed statistically significant. The only statistically significant correlations they found were between CJD and a family history of either CJD (19.1) or other psychotic disease (9.9), although the latter might simply be correlated because psychotic disease may be an early symptom of undiagnosed CJD.3 In contrast with earlier findings, the team concluded that there was no association between sporadic CJD and the consumption of organ meats, including brains (0.6).


Although these case-control studies shed a certain amount of light on potential risk factors for CJD, it’s impossible to draw firm conclusions. Obtaining data that produces statistically meaningful results can be difficult because of the rarity of CJD and hence the shortage of subjects. Human memory is quite fragile, too, so patients’ families may not accurately recall the lifestyle and dietary habits of their loved ones over the course of a decade or more. Consequently, researchers must cope with data that probably contain significant biases. In a review paper on CJD, Joe Gibbs of the NIH and Richard T. Johnson of Johns Hopkins University concluded that “the absence of geographic differences in incidence is more convincing evidence against major dietary factors, since large populations eschew pork and some consume no meat or meat products.” A CJD study of lifelong vegetarians, they proposed, could produce some interesting data.4


The inconclusive results of case-control studies do not completely rule out the environment as a possible cause of CJD. “Dr. Prusiner’s theory does fit much of the data of spontaneous generation of [malformed] PrP somewhere in the brain,” Will remarked—that is, the idea that sporadic CJD just happens by itself falls within the realm of the prion theory. Still, “it’s very odd, if you look at all the forms of human prion diseases there are, all of them are transmissible in the laboratory and could be due to some sort of infectious agent.”5 One of the great difficulties, he explained, is that “given that this is a disease of an extraordinarily long incubation period, are we really confident that we can exclude childhood exposure that is transmitted from person to person, as people move around? It’s difficult to be sure about that.” There might a “carrier state” that leaves people healthy yet still able to


226 CHAPTER 14


infect others. If so, “you would never be able to identify what’s causing the spread of the disease,” concluded Will, who hasn’t stopped looking for a possible environmental link. He has some preliminary data based on studies that trace CJD victims’ lives well before the time symptoms began—up to 70 years; they suggest some degree of geographic clustering, but no obvious candidates for a source of infection.


A Case for Undercounting


The difficulty in establishing causal links in sporadic prion diseases—if there are any in the first place—underlines the importance of thorough surveillance. The U.K. has an active program, and when a victim of CJD is reported, one of Robert Will’s colleagues visits and questions the victim’s family. “No one has looked for CJD systematically in the U.S.,” the NIH’s Paul Brown noted. “Ever.”6 The U.S., through the Centers for Disease Control and Prevention, has generally maintained a more passive system, collecting information from death certificates from the National Center for Health Statistics. Because CJD is invariably fatal, mortality data is considered to be an effective means of tabulating cases. The CDC assessed the accuracy of such data by comparing the numbers with figures garnered through an active search in 1996: Teams covering five regions of the U.S. contacted the specialists involved and reviewed medical records for CJD cases between 1991 and 1995. Comparing the actively garnered data with the death certificate information showed that “we miss about 14 percent,” said CDC epidemiologist Lawrence Schonberger. “That’s improving. Doctors are becoming more knowledgeable,” thanks to increased scientific and media attention given to prion diseases.7


The active surveillance study of 1996, however, only looked at cases in which physicians attributed the deaths to CJD. Misdiagnosed patients or patients who never saw a neurologist were not tabulated— thus CJD may be grossly underreported. Many neurological ailments share symptoms, especially early on. According to various studies, autopsies have found that CJD is misdiagnosed as other ills, such as dementia or Alzheimer’s disease, 5 to 13 percent of the time. The CDC finds that around 50,000Americans die from Alzheimer’s each year


Laying Odds 227


(about 4 million have the disease, according to the Alzheimer’s Association). Therefore, one could argue that thousands of CJD cases are being missed. (On the flip side, CJD could be mistakenly diagnosed as Alzheimer’s disease or dementia, but the number of CJD patients is so small that they wouldn’t dramatically skew the statistics for other neurological ills.)


In part to address the issue of misdiagnosis, CJD families have asked the CDC to place the disease on the national list of officially notifiable illnesses, which tends to include more contagious conditions such as AIDS, tuberculosis, hepatitis, and viral forms of encephalitis. Currently, only some states impose this requirement. CDC officials have discounted the utility of such an approach, arguing that it would duplicate the mortality data, which is more accurate than early diagnoses of CJD, anyway. Moreover, mandatory reporting of CJD cases does not necessarily guarantee the end to missed cases.8


One clue suggests that the passive system is undercounting CJD in the U.S.: racial difference. The number of black CJD victims is about 38 percent that of white victims. Rather than sporadic CJD being a onein-a-million lottery, it’s more like one-in-2.5-million for AfricanAmericans. Access to medical care might be one reason. Schonberger recounted that the CDC had asked other countries with substantial black populations to submit CJD figures for comparison but found that the surveillance in those countries was inadequate. “We haven’t been able to find any comparable literature on this issue, so it’s still up in the air,” Schonberger said. On the other hand, Alzheimer’s disease is more common among black people than whites, with an estimated higher prevalence ranging from 14 percent to almost 100 percent, according to a February 2002 report by the Alzheimer’s Association. Are some black CJD cases being misdiagnosed as Alzheimer’s?


Answering critics like Terry Singeltary, who feels that the U.S. undercounts CJD, Schonberger conceded that the current surveillance system has errors but stated that most of the errors will be confined to the older population. As Schonberger pointed out, no doctor would misdiagnose a 30-year-old CJD patient as having Alzheimer’s. The average age of the first 100 variant CJD victims was 29; should the epidemiology of vCJD change—if older people start coming down with it—then there would be problems. “The adequacy of our overall CJD surveillance would be greatly reduced should the proportion of older individuals affected by variant CJD substantially increase,” Schonberger explained.9


SNIP...SEE FULL TEXT;


http://ndl.ethernet.edu.et/bitstream/123456789/38386/1/516.pdf


Singeltary Submission SEAC 2007


SEAC SPONGIFORM ENCEPHALOPATHY ADVISORY COMMITTEE Minutes of the 99th meeting held on 14th December 2007 Singeltary Submission


This was 22 years to the day Mom died from the Heidenhain Variant of Creutzfeldt Jakob Disease i.e. hvCJD, when i made this submission to SEAC and this was their reply to my questions of concern about cjd in the USA, my how things have changed...terry


SEAC SPONGIFORM ENCEPHALOPATHY ADVISORY COMMITTEE Minutes of the 99th meeting held on 14th December 2007 


ITEM 8 – PUBLIC QUESTION AND ANSWER SESSION 40. The Chair explained that the purpose of the question and answer session was to give members of the public an opportunity to ask questions related to the work of SEAC. Mr Terry Singeltary (Texas, USA) had submitted a question prior to the meeting, asking: “With the Nor-98 now documented in five different states so far in the USA in 2007, and with the two atypical BSE H-base cases in Texas and Alabama, with both scrapie and chronic wasting disease (CWD) running rampant in the USA, is there any concern from SEAC with the rise of sporadic CJD in the USA from ''unknown phenotype'', and what concerns if any, in relations to blood donations, surgery, optical, and dental treatment, do you have with these unknown atypical phenotypes in both humans and animals in the USA? Does it concern SEAC, or is it of no concern to SEAC? Should it concern USA animal and human health officials?”


41. A member considered that this question appeared to be primarily related to possible links between animal and human TSEs in the USA. There is no evidence that sCJD is increasing in the USA and no evidence of any direct link between TSEs and CJD in the USA. Current evidence does not suggest that CWD is a significant risk to human health. There are unpublished data from a case of human TSE in the USA that are suggestive of an apparently novel form of prion disease with distinct molecular characteristics. However, it is unclear whether the case had been further characterised, if it could be linked to animal TSEs or if other similar cases had been found in the USA or elsewhere. In relation to the possible public health implications of atypical scrapie, H-type BSE and CWD, research was being conducted to investigate possible links and surveillance was in place to detect any changes in human TSEs. Although possible links between these diseases and human TSEs are of concern and require research, there is no evidence to suggest immediate public health action is warranted. The possible human health risks from classical scrapie had been discussed earlier in the meeting. Members noted that there are effective channels of discussion and collaboration on research between USA and European groups. Members agreed it is important to keep a watching brief on new developments on TSEs. 


http://web.archive.org/web/20091010132933/http://www.seac.gov.uk/minutes/99.pdf


2023

WAHIS, WOAH, OIE, United States of America Bovine spongiform encephalopathy Immediate notification

United States of America - Bovine spongiform encephalopathy - Immediate notification

GENERAL INFORMATION

COUNTRY/TERRITORY OR ZONE

COUNTRY/TERRITORY

ANIMAL TYPE

TERRESTRIAL

DISEASE CATEGORY

Listed disease

EVENT ID 5067

DISEASE Bovine spongiform encephalopathy

CAUSAL AGENT Bovine spongiform encephalopathy prion, atypical strain, L-type

GENOTYPE / SEROTYPE / SUBTYPE

-

START DATE 2023/05/15

REASON FOR NOTIFICATION Recurrence of an eradicated disease

DATE OF LAST OCCURRENCE 2018/08/28

CONFIRMATION DATE 2023/05/18

EVENT STATUS On-going

END DATE

-

SELF-DECLARATION NO

REPORT INFORMATION REPORT NUMBER Immediate notification

REPORT ID IN_160986

REPORT REFERENCE

-

REPORT DATE 2023/05/23

REPORT STATUS Validated

NO EVOLUTION REPORT

-

EPIDEMIOLOGY

SOURCE OF EVENT OR ORIGIN OF INFECTION

Spontaneous mutation

Unknown or inconclusive

EPIDEMIOLOGICAL COMMENTS

As part of the United States’ targeted surveillance program for bovine spongiform encephalopathy (BSE), a case of atypical BSE was identified in a nine year old beef type cow. This atypical BSE case was classified as L-type. In over 25 years of surveillance, the six native cases detected in the United States have all been atypical cases. The identified animal did not enter any food supply channels and at no time presented a risk to human health. Specified risk material removal and ruminant-to-ruminant feed bans continue to be effectively applied.

QUANTITATIVE DATA SUMMARY

MEASURING UNIT

Animal

Species Susceptible Cases Deaths Killed and Disposed of Slaughtered/ Killed for commercial use Vaccinated

Cattle (DOMESTIC)

NEW-1-1--TOTAL-1-1--

DIAGNOSTIC DETAILS

CLINICAL SIGNS

YES

METHOD OF DIAGNOSTIC

Diagnostic test

Test name Laboratory Species sampled Number of outbreaks sampled First result date Latest result date Result

Immunohistochemistry (IHC) National Veterinary Services Laboratories (NVSL), Ames, Iowa Cattle 1 2023/05/22 2023/05/22 Positive

Antigen capture enzyme-linked immunosorbent assay (AC-ELISA) National Veterinary Services Laboratories (NVSL), Ames, Iowa Cattle 1 

2023/05/18 2023/05/18 Positive

Antigen detection Western blot (Ag Western blot) National Veterinary Services Laboratories (NVSL), Ames, Iowa Cattle 1 2023/05/18 

2023/05/18 Positive

CONTROL MEASURES AT EVENT LEVEL

CONTROL MEASURES AT EVENT LEVEL

DOMESTIC ANIMALS

WILD ANIMALS

Official disposal of carcasses, by-products and waste

Applied

Screening

Applied

Traceability

Applied

NEW OUTBREAKS

OB_118941 - TENNESSEE

OUTBREAK REFERENCE -

START DATE 2023/05/15

END DATE

-

DETAILED CHARACTERISATION

-

FIRST ADMINISTRATIVE DIVISION Tennessee

SECOND ADMINISTRATIVE DIVISION Davidson

THIRD ADMINISTRATIVE DIVISION

-

EPIDEMIOLOGICAL UNIT Farm

LOCATION Tennessee

Latitude, Longitude 36.165 , -86.784

(Approximate location) OUTBREAKS IN CLUSTER

-

MEASURING UNIT Animal

AFFECTED POPULATION DESCRIPTION

Nine year old beef type cow. Note: Tracing efforts to date place this animal’s origin in the State of Tennessee. Location coordinates are approximate to the Tennessee State Capitol.

Species Susceptible Cases Deaths Killed and Disposed of Slaughtered/Killed for commercial use Vaccinated

Cattle (DOMESTIC)

NEW-1-1--TOTAL-1-1--

METHOD OF DIAGNOSTIC

Diagnostic test

CONTROL MEASURES DIFFERENT FROM EVENT LEVEL MEASURES NOT IMPLEMENTED

-

ADDITIONAL MEASURES

-


snip...see full text and more here;

Wednesday, May 24, 2023 

WAHIS, WOAH, OIE, United States of America Bovine spongiform encephalopathy Immediate notification


Atypical BSE detected St. Gallen Bern, 13.07.2023 case 2 2023


https://www.blv.admin.ch/blv/de/home/dokumentation/nsb-news-list.msg-id-96688.html


WAHIS, WOAH, OIE, REPORT Switzerland BSE 2023/03/08 case 1 2023


https://wahis.woah.org/#/in-review/4962


Wednesday, May 24, 2023 


WAHIS, WOAH, OIE, USA BSE


https://wahis.woah.org/#/in-review/5067


Monday, March 20, 2023 


WAHIS, WOAH, OIE, REPORT UK BSE


https://wahis.woah.org/#/in-review/4977


BRAZIL BSE START DATE 2023/01/18


https://wahis.woah.org/#/in-review/4918


SPAIN BSE START DATE 2023/01/21


https://wahis.woah.org/#/in-review/4888


NETHERLANDS BSE START DATE 2023/02/01


https://wahis.woah.org/#/in-review/4876


'Spontaneous mutation'

***> PLEASE NOTE!

spontaneous/sporadic CJD in 85%+ of all human TSE, or spontaneous BSE in cattle, is a pipe dream, dreamed up by USDA/OIE et al, that has never been proven. let me repeat, NEVER BEEN PROVEN FOR ALL HUMAN OR ANIMAL TSE I.E. ATYPICAL BSE OR SPORADIC CJD! please see;

***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.


OIE Conclusions on transmissibility of atypical BSE among cattle

Given that cattle have been successfully infected by the oral route, at least for L-BSE, it is reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle are exposed to contaminated feed. In addition, based on reports of atypical BSE from several countries that have not had C-BSE, it appears likely that atypical BSE would arise as a spontaneous disease in any country, albeit at a very low incidence in old cattle. In the presence of livestock industry practices that would allow it to be recycled in the cattle feed chain, it is likely that some level of exposure and transmission may occur. As a result, since atypical BSE can be reasonably considered to pose a potential background level of risk for any country with cattle, the recycling of both classical and atypical strains in the cattle and broader ruminant populations should be avoided.


Annex 7 (contd) AHG on BSE risk assessment and surveillance/March 2019

34 Scientific Commission/September 2019

3. Atypical BSE

The Group discussed and endorsed with minor revisions an overview of relevant literature on the risk of atypical BSE being recycled in a cattle population and its zoonotic potential that had been prepared ahead of the meeting by one expert from the Group. This overview is provided as Appendix IV and its main conclusions are outlined below. With regard to the risk of recycling of atypical BSE, recently published research confirmed that the L-type BSE prion (a type of atypical BSE prion) may be orally transmitted to calves1 . In light of this evidence, and the likelihood that atypical BSE could arise as a spontaneous disease in any country, albeit at a very low incidence, the Group was of the opinion that it would be reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle were to be exposed to contaminated feed. Therefore, the recycling of atypical strains in cattle and broader ruminant populations should be avoided.

4. Definitions of meat-and-bone meal (MBM) and greaves


The L-type BSE prion is much more virulent in primates and in humanized mice than is the classical BSE prion, which suggests the possibility of zoonotic risk associated with the L-type BSE prion


Consumption of L-BSE–contaminated feed may pose a risk for oral transmission of the disease agent to cattle.


Thus, it is imperative to maintain measures that prevent the entry of tissues from cattle possibly infected with the agent of L-BSE into the food chain.


Atypical L-type bovine spongiform encephalopathy (L-BSE) transmission to cynomolgus macaques, a non-human primate

Fumiko Ono 1, Naomi Tase, Asuka Kurosawa, Akio Hiyaoka, Atsushi Ohyama, Yukio Tezuka, Naomi Wada, Yuko Sato, Minoru Tobiume, Ken'ichi Hagiwara, Yoshio Yamakawa, Keiji Terao, Tetsutaro Sata

Affiliations expand

PMID: 21266763

Abstract

A low molecular weight type of atypical bovine spongiform encephalopathy (L-BSE) was transmitted to two cynomolgus macaques by intracerebral inoculation of a brain homogenate of cattle with atypical BSE detected in Japan. They developed neurological signs and symptoms at 19 or 20 months post-inoculation and were euthanized 6 months after the onset of total paralysis. Both the incubation period and duration of the disease were shorter than those for experimental transmission of classical BSE (C-BSE) into macaques. Although the clinical manifestations, such as tremor, myoclonic jerking, and paralysis, were similar to those induced upon C-BSE transmission, no premonitory symptoms, such as hyperekplexia and depression, were evident. Most of the abnormal prion protein (PrP(Sc)) was confined to the tissues of the central nervous system, as determined by immunohistochemistry and Western blotting. The PrP(Sc) glycoform that accumulated in the monkey brain showed a similar profile to that of L-BSE and consistent with that in the cattle brain used as the inoculant. PrP(Sc) staining in the cerebral cortex showed a diffuse synaptic pattern by immunohistochemistry, whereas it accumulated as fine and coarse granules and/or small plaques in the cerebellar cortex and brain stem. Severe spongiosis spread widely in the cerebral cortex, whereas florid plaques, a hallmark of variant Creutzfeldt-Jakob disease in humans, were observed in macaques inoculated with C-BSE but not in those inoculated with L-BSE.


see full text;


''H-TYPE BSE AGENT IS TRANSMISSIBLE BY THE ORONASAL ROUTE''

This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.


Bovine Spongiform Encephalopathy BSE TSE Prion Origin USA?, what if?

Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research

Title: Sheep are susceptible to the agent of TME by intracranial inoculation and have evidence of infectivity in lymphoid tissues

Author item CASSMANN, ERIC - Oak Ridge Institute For Science And Education (ORISE) item MOORE, SARA - Oak Ridge Institute For Science And Education (ORISE) item SMITH, JODI - Iowa State University item Greenlee, Justin 

Submitted to: Frontiers in Veterinary Science Publication Type: Peer Reviewed Journal Publication Acceptance Date: 11/14/2019 Publication Date: 11/29/2019 Citation: Cassmann, E.D., Moore, S.J., Smith, J.D., Greenlee, J.J. 2019. 

Sheep are susceptible to the agent of TME by intracranial inoculation and have evidence of infectivity in lymphoid tissues. 

Frontiers in Veterinary Science. 6:430. https://doi.org/10.3389/fvets.2019.00430. DOI: https://doi.org/10.3389/fvets.2019.00430 

Interpretive Summary: Prion diseases are protein misfolding diseases that are transmissible between animals. The outcome of prion infection is irreversible brain damage and death. Transmission can occur between animals of the same or different species, however, transmission between different species is usually less efficient due to the species barrier, which results from differences in the amino acid sequence of the prion protein between the donor and recipient species. The present work evaluated whether transmissible mink encephalopathy (TME) can infect sheep. Our results demonstrate that sheep are susceptible to the TME agent and that the TME agent has similar properties to the agent of L-type atypical bovine spongiform encephalopathy (L-BSE). This work supports the ideas that L-BSE is a possible source for TME in mink and that the practice of feeding cattle with neurologic disease to mink should be avoided. This information is important to farmers who raise cattle, sheep, or mink.

Technical Abstract: Transmissible mink encephalopathy (TME) is a food borne prion disease. Epidemiological and experimental evidence suggests similarities between the agent of TME and L-BSE. This experiment demonstrates the susceptibility of four different genotypes of sheep to the agent of TME by intracranial inoculation. The four genotypes of sheep used in this experiment had polymorphisms corresponding to codons 136 and 171 of the prion gene: VV136QQ171, AV136QQ171, AA136QQ171, and AA136QR171. All intracranially inoculated sheep without comorbidities (15/15) developed clinical scrapie and had detectable PrPSc by immunohistochemistry, western blot, and enzyme immunoassay (EIA). The mean incubation periods in TME infected sheep correlated with their relative genotypic susceptibility. There was peripheral distribution of PrPSc in the trigeminal ganglion and neuromuscular spindles; however, unlike classical scrapie and C-BSE in sheep, ovine TME did not accumulate in the lymphoid tissue. To rule out the presence of infectious, but proteinase K susceptible PrPSc, the lymph nodes of two sheep genotypes, VV136QQ171 and AA136QQ171, were bioassayed in transgenic ovinized mice. None of the mice (0/32) inoculated by the intraperitoneal route had detectable PrPSc by EIA. Interestingly, mice intracranially inoculated with RPLN tissue from a VV136QQ171 sheep were EIA positive (3/17) indicating that sheep inoculated with TME harbor infectivity in their lymph nodes. Western blot analysis demonstrated similarities in the migration patterns between ovine TME and the bovine TME inoculum. Overall, these results demonstrate that sheep are susceptible to the agent of TME, and that the tissue distribution of PrPSc in TME infected sheep is distinct from classical scrapie.




Previous work has shown that the Stetsonville, WI outbreak of TME could have been precipitated by feeding mink a downer cow with atypical BSE; therefore, it very well may have originated from a cow with L-BSE. The agent of TME appears to remain stable, and it has a high transmission efficiency after a sequence of interspecies transmission events. Although C-BSE is the archetypal foodborne TSE, our findings indicate that L-BSE and bTME have greater transmission efficiencies in bovinized mice. Previous work has demonstrated that L-BSE also is more virulent than C-BSE in mice expressing the human prion protein [46, 55]. Although the documented incidence of L-BSE is low, the propensity of L-BSE and the TME agent to cross species barriers support the continued monitoring for atypical BSE.


***>This work supports the ideas that L-BSE is a possible source for TME in mink and that the practice of feeding cattle with neurologic disease to mink should be avoided. This information is important to farmers who raise cattle, sheep, or mink.<***

1985

Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME. 

snip... 

The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle... 




Tennessee State Veterinarian Alerts Cattle Owners to Disease Detection Mad Cow atypical L-Type BSE

Friday, May 19, 2023 | 04:12pm NASHVILLE — The Tennessee State Veterinarian is confirming a case of atypical bovine spongiform encephalopathy (BSE) in a cow with ties to Tennessee.

The cow appeared unwell after arriving at a packing company in South Carolina. In alignment with the United States Department of Agriculture’s BSE surveillance program, the animal was isolated and euthanized. It did not enter the food supply. Preliminary investigation has determined the cow originated in southeast Tennessee.

“We are working closely with our federal partners and animal health officials in South Carolina for this response,” State Veterinarian Dr. Samantha Beaty said. “That includes determining prior owners and locations where the affected cow lived in Tennessee and tracing siblings and offspring for testing.”

BSE is a chronic degenerative disease affecting the central nervous system of cattle. It is caused by an abnormal prion protein. The atypical form occurs spontaneously at very low levels in all cattle populations, particularly in older animals. Atypical BSE poses no known risk to human health. It is different from the classical form of BSE, which has not been detected in the U.S. since 2003.

BSE is not contagious and therefore is not spread through contact between cattle or with other species. There is no treatment for or vaccine to prevent BSE. The U.S. has a strong surveillance program in place for early detection and to prevent suspect cattle from entering the food supply chain.

Cattle owners are always advised to monitor their herds for health. Cattle affected by BSE may display changes in temperament, abnormal posture, poor coordination, decreased milk production, or loss of condition without noticeable loss of appetite. Owners should report any herd health concerns to their veterinarian or to the State Veterinarian’s office at 615-837-5120.

The Tennessee Department of Agriculture Animal Health Division is responsible for promoting animal health in Tennessee. The State Veterinarian’s office seeks to prevent the spread of disease through import and movement requirements, livestock traceability, disaster mitigation, and the services of the C.E. Kord Animal Health Diagnostic Laboratory. The division collaborates with other health-related stakeholders, academic institutions, and extension services to support One Health, an initiative to improve health for people and animals.


USDA Announces Atypical L-Type Bovine Spongiform Encephalopathy BSE Detection

The U.S. Department of Agriculture (USDA) is announcing an atypical case of Bovine Spongiform Encephalopathy (BSE), a neurologic disease of cattle, in an approximately five-year-old or older beef cow at a slaughter plant in South Carolina. This animal never entered slaughter channels and at no time presented a risk to the food supply or to human health in the United States. Given the United States’ negligible risk status for BSE, we do not expect any trade impacts as a result of this finding. 

USDA Animal and Plant Health Inspection Service’s (APHIS) National Veterinary Services Laboratories (NVSL) confirmed that this cow was positive for atypical L-type BSE. The animal was tested as part of APHIS’s routine surveillance of cattle that are deemed unsuitable for slaughter. The radio frequency identification tag present on the animal is associated with a herd in Tennessee. APHIS and veterinary officials in South Carolina and Tennessee are gathering more information during this ongoing investigation.

Atypical BSE generally occurs in older cattle and seems to arise rarely and spontaneously in all cattle populations.

 This is the nation’s 7th detection of BSE. Of the six previous U.S. cases, the first, in 2003, was a case of classical BSE in a cow imported from Canada; the rest have been atypical (H- or L-type) BSE.

The World Organization for Animal Health (WOAH) recognizes the United States as negligible risk for BSE. As noted in the WOAH guidelines for determining this status, atypical BSE cases do not impact official BSE risk status recognition as this form of the disease is believed to occur spontaneously in all cattle populations at a very low rate. Therefore, this finding of an atypical case will not change the negligible risk status of the United States, and should not lead to any trade issues. 

 The United States has a longstanding system of interlocking safeguards against BSE that protects public and animal health in the United States, the most important of which is the removal of specified risk materials - or the parts of an animal that would contain BSE should an animal have the disease - from all animals presented for slaughter. The second safeguard is a strong feed ban that protects cattle from the disease. Another important component of our system - which led to this detection - is our ongoing BSE surveillance program that allows USDA to detect the disease if it exists at very low levels in the U.S. cattle population. 

More information about this disease is available in the BSE factsheet.



May 2, 2023, i submitted this to the USDA et al;

Docket No. APHIS–2023–0027 Notice of Request for Revision to and Extension of Approval of an Information Collection; National Veterinary Services Laboratories; Bovine Spongiform Encephalopathy Surveillance Program Singeltary Submission

ONLY by the Grace of God, have we not had a documented BSE outbreak, that and the fact the USDA et al are only testing 25K cattle for BSE, a number too low to find mad cow disease from some 28.9 million beef cows in the United States as of Jan. 1, 2023, down 4% from last year. The number of milk cows in the United States increased to 9.40 million. U.S. calf crop was estimated at 34.5 million head, down 2% from 2021. Jan 31, 2023. 

ALL it would take is one BSE positive, yet alone a handful of BSE cases, this is why the Enhanced BSE was shut down, and the BSE testing shut down to 25k, and the BSE GBRs were replaced with BSE MRRs, after the 2003 Christmas Mad cow, the cow that stole Christmas, making it legal to trade BSE, imo. 


Specified Risk Materials DOCKET NUMBER Docket No. FSIS-2022-0027 Singeltary Submission Attachment



BSE TSE Prion MAD COW TESTING IN THE USA COMPARED TO OTHER COUNTRIES?

1st a bit of history 

Chronic Wasting Disease in Texas


A Real Disease with Proven Impacts


Produced by a coalition of concerned hunters, landowners, & conservationists (last update 08/2023)


Since 2012, CWD has been detected in wild deer in just 7 counties in Texas and is only established in the western panhandle and far west Texas.


In that same period of time, captive deer breeders have exposed almost half of Texas counties to CWD. 


https://bit.ly/3xL16Gm


As of August 2023, 116 Texas counties have received possibly infected breeder deer that cannot be located, putting more than 140,000 landowners at risk of the disease. 


https://bit.ly/3xL16Gm


“It is interesting to note that, in 2001, the State of Texas shifted its deer management strategies toward the same leanings that Kroll has suggested for Wisconsin. In Texas, the change was brought about via heavy lobbying from the high-fence deer ranching industry. This pressure helped convince the Texas Parks and Wildlife to change their regulations and allow private landowners to select the own deer biologists.”


http://www.texasmonthly.com/story/which-side-fence-are-you


2012 “For 10 years, Texas has had an aggressive Chronic Wasting Disease prevention and monitoring program. Wildlife agency regulations prohibit importing deer into the state, and the agency has tested more than 26,000 hunter-taken deer and 7,400 animals from the captive-deer industry. None of those deer tested positive.”


http://www.chron.com/news/houston-texas/article/Brain-eating-disease-found-in-Texas-deer-3697731.php


Texas CWD Surveillance Positives


https://tpwd.texas.gov/huntwild/wild/diseases/cwd/positive-cases/listing-cwd-cases-texas.phtml#texasCWD


Counties where CWD Exposed Deer were Released


https://tpwd.texas.gov/documents/257/CWD-Trace-OutReleaseSites.pdf


Number of CWD Exposed Deer Released by County


https://tpwd.texas.gov/documents/258/CWD-Trace-OutReleaseSites-NbrDeer.pdf


Chronic Wasting Disease CWD Captive Herds updated April 2023


https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/cervid/cervids-cwd/cervids-voluntary-hcp


Chronic Wasting Disease CWD Captive Herds updated April 2023


https://www.aphis.usda.gov/animal_health/animal_diseases/cwd/downloads/status-of-captive-herds.pdf


CWD poses a significant threat to the future of hunting in Texas. Deer population declines of 45 and 50 percent have been documented in Colorado and Wyoming. A broad infection of Texas deer populations resulting in similar population impacts would inflict severe economic damage to rural communities and could negatively impact land markets. Specifically, those landowners seeking to establish a thriving herd of deer could avoid buying in areas with confirmed CWD infections. As they do with anthrax-susceptible properties, land brokers may find it advisable to inquire about the status of CWD infections on properties that they present for sale. Prospective buyers should also investigate the status of the wildlife on prospective properties. In addition, existing landowners should monitor developments as TPWD crafts management strategies to identify and contain this deadly disease. 


Dr. Gilliland (c-gilliland@tamu.edu) is a research economist with the Texas Real Estate Research Center at Texas A&M University.



TPWD Executive Order No. 23-003 CWD Emergency Rules Adopted for Movement of Breeder Deer 


Executive Orders


2023


Executive Order No. 23-003


Date: July 24, 2023


The Executive Director finds that additional discoveries of CWD in free-ranging white-tailed deer within deer breeding facilities regulated under Parks and Wildlife Code, Chapter 43, Subchapter L and regulations adopted pursuant to that subchapter (31 TAC Chapter 65, Subchapters B and T) constitute an immediate danger to the white-tailed deer and mule deer resources of Texas and that the adoption of rules on an emergency basis with fewer than 30 days’ notice is necessary to address an immediate danger.



15 minute mark video shows sick deer with cwd, and this deer DIED FROM CWD, IT'S DOCUMENTED, commentator says ''so if anyone every tells you, that a deer has never died from CWD, think of this picture, because the Wisconsin Veterinary Lab told us, what when they looked at her sample under a microscope, she was the hottest animal they had ever seen, and that's in terms of the fluorescents that comes off the slide when the look at it, so, a lot of Prion in her system.''


see much more about 2 hours long...



TEXAS BREEDER DEER ESCAPEE WITH CWD IN THE WILD, or so the genetics would show?


OH NO, please tell me i heard this wrong, a potential Texas captive escapee with cwd in the wild, in an area with positive captive cwd herd?


apparently, no ID though. tell me it ain't so please...


23:00 minute mark


''Free Ranging Deer, Dr. Deyoung looked at Genetics of this free ranging deer and what he found was, that the genetics on this deer were more similar to captive deer, than the free ranging population, but he did not see a significant connection to any one captive facility that he analyzed, so we believe, Ahhhhhh, this animal had some captive ahhh, whatnot.''



Commission Agenda Item No. 5 Exhibit B


DISEASE DETECTION AND RESPONSE RULES


PROPOSAL PREAMBLE


1. Introduction. 


snip...


 A third issue is the accuracy of mortality reporting. Department records indicate that for each of the last five years an average of 26 deer breeders have reported a shared total of 159 escapes. Department records for the same time period indicate an average of 31 breeding facilities reported a shared total of 825 missing deer (deer that department records indicate should be present in the facility, but cannot be located or verified). 



On January 21, 2017 a tornado took down thousands of feet of fence for a 420-acre illegal deer enclosure in Lamar County that had been subject to federal and state investigation for illegally importing white-tailed deer into Mississippi from Texas (a CWD positive state). Native deer were free to move on and off the property before all of the deer were able to be tested for CWD. Testing will be made available for a period of three years for CWD on the property and will be available for deer killed within a 5-mile radius of the property on a voluntary basis. 



Deep Throat to Singeltary BSE Mad Cow 2001 to 2023


I remember what “deep throat” told me about Scrapie back around 2001, I never forgot, and it seems it’s come to pass;


***> Confidential!!!!


***> As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal  recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!


---end personal email---end...tss 


(I never knew who this person was, but got me into the U.S. BSE Emergency 50 State conference call back 2001, and we corresponded for years about BSE TSE Prion, have not heard from in over a decade, but they were on the inside looking out. You can believe this or not, but this was real, i don’t make this stuff up…plus my endeavors to get those 1 million cattle tested for BSE failed. There was an ENHANCED BSE SURVEILLANCE put forth after 2003, we pushed for it, but it was abruptly shut down after the atypical BSE cases were popping up…a bit of history for anyone interested…terry)


DEEP THROAT TO TSS 2000-2001 (take these old snips of emails with how ever many grains of salt you wish. ...tss) 


The most frightening thing I have read all day is the report of Gambetti's finding of a new strain of sporadic cjd in young people...Dear God, what in the name of all that is holy is that!!! If the US has different strains of scrapie.....why???? than the UK...then would the same mechanisms that make different strains of scrapie here make different strains of BSE...if the patterns are different in sheep and mice for scrapie.....could not the BSE be different in the cattle, in the mink, in the humans.......I really think the slides or tissues and everything from these young people with the new strain of sporadic cjd should be put up to be analyzed by many, many experts in cjd........bse.....scrapie Scrape the damn slide and put it into mice.....wait.....chop up the mouse brain and and spinal cord........put into some more mice.....dammit amplify the thing and start the damned research.....This is NOT rocket science...we need to use what we know and get off our butts and move....the whining about how long everything takes.....well it takes a whole lot longer if you whine for a year and then start the research!!! 


Not sure where I read this but it was a recent press release or something like that: I thought I would fall out of my chair when I read about how there was no worry about infectivity from a histopath slide or tissues because they are preserved in formic acid, or formalin or formaldehyde.....for God's sake........ Ask any pathologist in the UK what the brain tissues in the formalin looks like after a year.......it is a big fat sponge...the agent continues to eat the brain ......you can't make slides anymore because the agent has never stopped........and the old slides that are stained with Hemolysin and Eosin......they get holier and holier and degenerate and continue...what you looked at 6 months ago is not there........Gambetti better be photographing every damned thing he is looking at..... 


Okay, you need to know. You don't need to pass it on as nothing will come of it and there is not a damned thing anyone can do about it. Don't even hint at it as it will be denied and laughed at.......... USDA is gonna do as little as possible until there is actually a human case in the USA of the nvcjd........if you want to move this thing along and shake the earth....then we gotta get the victims families to make sure whoever is doing the autopsy is credible, trustworthy, and a saint with the courage of Joan of Arc........I am not kidding!!!! so, unless we get a human death from EXACTLY the same form with EXACTLY the same histopath lesions as seen in the UK nvcjd........forget any action........it is ALL gonna be sporadic!!!  And, if there is a case.......there is gonna be every effort to link it to international travel, international food, etc. etc. etc. etc. etc. They will go so far as to find out if a sex partner had ever traveled to the UK/europe, etc. etc. .... It is gonna be a long, lonely, dangerous twisted journey to the truth. They have all the cards, all the money, and are willing to threaten and carry out those threats....and this may be their biggest downfall... 


Thanks as always for your help. (Recently had a very startling revelation from a rather senior person in government here..........knocked me out of my chair........you must keep pushing. If I was a power person....I would be demanding that there be a least a million bovine tested as soon as possible and agressively seeking this disease. The big players are coming out of the woodwork as there is money to be made!!! In short: "FIRE AT WILL"!!! for the very dumb....who's "will"! "Will be the burden to bare if there is any coverup!" 


again it was said years ago and it should be taken seriously....BSE will NEVER be found in the US! As for the BSE conference call...I think you did a great service to freedom of information and making some people feign integrity...I find it scary to see that most of the "experts" are employed by the federal government or are supported on the "teat" of federal funds. A scary picture! I hope there is a confidential panel organized by the new government to really investigate this thing. 


You need to watch your back........but keep picking at them.......like a buzzard to the bone...you just may get to the truth!!! (You probably have more support than you know. Too many people are afraid to show you or let anyone else know. I have heard a few things myself... you ask the questions that everyone else is too afraid to ask.) 


END...TSS

and so it was...

Rapid recontamination of a farm building occurs after attempted prion removal

First published: 19 January 2019 https://doi.org/10.1136/vr.105054

The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease.

snip...

This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapiepositive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.


***>This is very likely to have parallels with control efforts for CWD in cervids.


***> Infectious agent of sheep scrapie may persist in the environment for at least 16 years

***> Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. 

JOURNAL OF GENERAL VIROLOGY Volume 87, Issue 12

Infectious agent of sheep scrapie may persist in the environment for at least 16 years Free


Front. Vet. Sci., 14 September 2015 | https://doi.org/10.3389/fvets.2015.00032

Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission

In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination. 


172. Establishment of PrPCWD extraction and detection methods in the farm soil

Conclusions: Our studies showed that PrPCWD persist in 0.001% CWD contaminated soil for at least 4 year and natural CWD-affected farm soil. When cervid reintroduced into CWD outbreak farm, the strict decontamination procedures of the infectious agent should be performed in the environment of CWD-affected cervid habitat.


THE tse prion aka mad cow type disease is not your normal pathogen. 

The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit. 

you cannot cook the TSE prion disease out of meat. 

you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE. 

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well. 

the TSE prion agent also survives Simulated Wastewater Treatment Processes. 

IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades. 

you can bury it and it will not go away. 

The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. 

it’s not your ordinary pathogen you can just cook it out and be done with. 

***> that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.

1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8 

***> Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery. 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. 

Laboratory of Central Nervous System Studies, National Institute of 

Neurological Disorders and Stroke, National Institutes of Health, 

Bethesda, MD 20892. 

Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them. 

PMID: 8006664 [PubMed - indexed for MEDLINE] 


New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication 


Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production 


Detection of protease-resistant cervid prion protein in water from a CWD-endemic area 


A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing 


Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals 


THURSDAY, FEBRUARY 28, 2019 

BSE infectivity survives burial for five years with only limited spread


***> Humans who consume antler velvet as a nutritional supplement are at risk for exposure to prions. 


Volume 15, Number 5—May 2009

Research

Chronic Wasting Disease Prions in Elk Antler Velvet


Rachel C. Angers1, Tanya S. Seward, Dana Napier, Michael Green, Edward Hoover, Terry Spraker, Katherine O’Rourke, Aru Balachandran, and Glenn C. Telling

unknown.gif

 

Author affiliations: University of Kentucky Medical Center, Lexington, Kentucky, USA (R.C. Angers, T.S. Seward, D. Napier, M. Green, G.C. Telling); Colorado State University, Fort Collins, Colorado, USA (E. Hoover, T. Spraker); US Department of Agriculture, Pullman, Washington, USA (K. O’Rourke); Canadian Food Inspection Agency, Ottawa, Ontario, Canada (A. Balachandran); 1Current affiliation: Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.

Abstract


Chronic wasting disease (CWD) is a contagious, fatal prion disease of deer and elk that continues to emerge in new locations. To explore the means by which prions are transmitted with high efficiency among cervids, we examined prion infectivity in the apical skin layer covering the growing antler (antler velvet) by using CWD-susceptible transgenic mice and protein misfolding cyclic amplification. Our finding of prions in antler velvet of CWD-affected elk suggests that this tissue may play a role in disease transmission among cervids. Humans who consume antler velvet as a nutritional supplement are at risk for exposure to prions. The fact that CWD prion incubation times in transgenic mice expressing elk prion protein are consistently more rapid raises the possibility that residue 226, the sole primary structural difference between deer and elk prion protein, may be a major determinant of CWD pathogenesis.



TUESDAY, MAY 11, 2021

A Unique Presentation of Creutzfeldt-Jakob Disease in a Patient Consuming Deer Antler Velvet

Conclusion

We believe that our patient’s case of CJD is highly suspicious for cervid etiology given the circumstances of the case as well as the strong evidence of plausibility reported in published literature. This is the first known case of CJD in a patient who had consumed deer antler velvet. Despite the confirmed diagnosis of CJD, a causal relationship between the patient’s disease and his consumption of deer antler velvet cannot be definitively concluded.

Supplemental data including molecular tissue sample analysis and autopsy findings could yield further supporting evidence. Given this patient’s clinical resemblance to CBD and the known histological similarities of CBD with CJD, clinicians should consider both diseases in the differential diagnosis of patients with a similarly esoteric presentation. Regardless of the origin of this patient’s disease, it is clear that the potential for prion transmission from cervids to humans should be further investigated by the academic community with considerable urgency.


''We believe that our patient’s case of CJD is highly suspicious for cervid etiology given the circumstances of the case as well as the strong evidence of plausibility reported in published literature. This is the first known case of CJD in a patient who had consumed deer antler velvet. Despite the confirmed diagnosis of CJD, a causal relationship between the patient’s disease and his consumption of deer antler velvet cannot be definitively concluded.''


CREUTZFELDT JAKOB DISEASE: A Unique Presentation of Creutzfeldt-Jakob Disease in a Patient Consuming Deer Antler Velvet

i was warning England and the BSE Inquiry about just this, way back in 1998, and was ask to supply information to the BSE Inquiry. for anyone that might be interested, see;

Singeltary submission to the BSE Inquiry on CJD and Nutritional Supplements 1998

ABOUT that deer antler spray and CWD TSE PRION... I have been screaming this since my neighbors mom died from cjd, and she had been taking a supplement that contained bovine brain, bovine eyeball, and other SRMs specified risk materials, the most high risk for mad cow disease. just saying...

I made a submission to the BSE Inquiry long ago during the BSE Inquiry days, and they seemed pretty interested.

Sender: "Patricia Cantos"

To: "Terry S Singeltary Sr. (E-mail)"

Subject: Your submission to the Inquiry

Date: Fri, 3 Jul 1998 10:10:05 +0100 3 July 1998

Mr Terry S Singeltary Sr. E-Mail: Flounder at wt.net Ref: E2979

Dear Mr Singeltary, Thank you for your E-mail message of the 30th of June 1998 providing the Inquiry with your further comments. Thank you for offering to provide the Inquiry with any test results on the nutritional supplements your mother was taking before she died. As requested I am sending you our general Information Pack and a copy of the Chairman's letter. Please contact me if your system cannot read the attachments. Regarding your question, the Inquiry is looking into many aspects of the scientific evidence on BSE and nvCJD.

I would refer you to the transcripts of evidence we have already heard which are found on our internet site at ;

http://www.bse.org.uk.

Could you please provide the Inquiry with a copy of the press article you refer to in your e-mail? If not an approximate date for the article so that we can locate it? In the meantime, thank you for you comments. Please do not hesitate to contact me on... snip...end...tss

everyone I tell this too gets it screwed up...MY MOTHER WAS NOT TAKING THOSE SUPPLEMENTS IPLEX (that I ever knew of). this was my neighbors mother that died exactly one year previously and to the day of sporadic CJD that was diagnosed as Alzheimer’s at first. my mother died exactly a year later from the Heidenhain Variant of Creutzfeldt Jakob Disease hvCJD, and exceedingly rare strains of the ever growing sporadic CJD’s. both cases confirmed. ...

kind regards, terry

TSEs i.e. mad cow disease's BSE/BASE and NUTRITIONAL SUPPLEMENTS IPLEX, mad by standard process; vacuum dried bovine BRAIN, bone meal, bovine EYE, veal Bone, bovine liver powder, bovine adrenal, vacuum dried bovine kidney, and vacuum dried porcine stomach. also; what about potential mad cow candy bars ? see their potential mad cow candy bar list too... THESE are just a few of MANY of just this ONE COMPANY...TSS

''So, in sum, dietary supplements sold in the United States often contain ruminant tissues from undisclosed sources. Personally, I am rather squeamish and I don't think I would be eating prostate or testicle or pituitary, but I am also a little bit wary of consuming products with those glands, not just out of personal repugnance but simply out of a health concern.'' 

DEPARTMENT OF HEALTH AND HUMAN SERVICES FOOD AND DRUG ADMINISTRATION CENTER FOR BIOLOGICS EVALUATION AND RESEARCH TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES ADVISORY COMMITTEE Friday, January 19, 2001

snip...

15 Open Public Hearing

16 DR. FREAS: We are opening the open public hearing

17 now. We have received one response to speak in this

18 afternoon's open public hearing. That is from Dr. Scott

19 Norton. If Dr. Norton is here, would you please come

20 forward. You can either use the podium or the microphone,

21 whichever is your choice.

22 DR. NORTON: I am Scott Norton and I am a

23 physician in the Washington D.C. area. I am here speaking

24 as a private citizen today.

25 I first became concerned about the presence of 231

1 tissues from ruminant animals in dietary supplements about

2 six months ago and expressed my concern in a letter that was 3 published in New England Journal of Medicine in July of Year 4 2000. 5 A couple of the products that I had looked at, and 6 examined their labels, that raised these concerns I brought 7 in right here. I will just read some of the organs that are 8 found in one that is called Male Power. Deer antler, 9 pancreas, orchic--despite what we just heard that the FDA

10 prefers the term "testicular tissue" to be written on the

11 labels, I have never seen a dietary supplement say

12 "testicle." They always say "orchis" or "orchic" which may

13 sound rather flowery to the etymologically impaired--thymus,

14 adrenal, heart, lymph node, prostate, spleen and pituitary.

15 There are actually seventeen organs in that particular

16 product.

17 There is another product that is called Brain

18 Nutrition that tells us that it is vitamins and minerals

19 essential for important brain function. It does not mention

20 that there is any glandulars on at least the bold print. 21 But if you look at the small print on the back, we learn

22 that it has brain extract and pituitary extract, raw, in

23 there.

24 We know that many of the organs that can be found

25 in the dietary supplements do fall in that list of organs

232

1 that are suspect for contamination with TSEs, the labels, in 2 nearly all cases, identify neither the animal source nor the 3 geographic location from which the organs were derived. I 4 have seen one line that did specify from New Zealand cattle 5 but no other manufacturer will list either the species or 6 the geographic location. 7 The FDA's and the USDA's import alerts that we 8 just learned about prohibit the use of these organs in 9 foods, medicines and medical devices. But my reading of the

10 alert, 17-04, suggests that DSHEA does allow some loopholes

11 for these tissues to possible slip in.

12 I will just read from 17-04 that we heard. On the

13 first page, it says that, "This alert does not establish any

14 obligations on regulated entities." I love seeing

15 legislation that starts out with that caveat.

16 Then it says, further, "The USDA regulations do

17 not apply to bovine-derived materials intended for human

18 consumption as finished dietary supplements." We also learn

19 that the prohibition, or the import alert, is limited to

20 bulk lots of these tissues, completed tissues, from BSE-

21 derived countries. It does not mention if it is not a bulk

22 import or if it is raw materials rather than finished

23 materials.

24 Further, we know that it is strongly recommended

25 but not actually prohibited in the language here. So I have

233

1 not taken the assurances from that import alert that Dr. 2 Moore was trying to convey to us. 3 So, in sum, dietary supplements sold in the United 4 States often contain ruminant tissues from undisclosed 5 sources. Personally, I am rather squeamish and I don't 6 think I would be eating prostate or testicle or pituitary, 7 but I am also a little bit wary of consuming products with 8 those glands, not just out of personal repugnance but simply 9 out of a health concern.

10 So my question to the advisory committee is this;

11 is my caution reasonable and, if it is, should we take

12 further efforts to inform, or even protect, the American

13 public from such exposure.

14 I was curious about Dr. Moore's remarks. I sensed

15 two messages. One was the initial reassurance that FDA has

16 the regulatory authority but then I also learned that it is

17 the manufacturer's responsibility to provide those 18 assurances, that the FDA doesn't actually inspect.

19 I think that the FDA commissioners from Harvey

20 Wylie to David Kessler would say that that track record has

21 proven itself.

22 Thank you very much.

23 [Applause.]

24 DR. BROWN: Thanks, Dr. Norton. 25 Committee Discussion snip...

17 But I think that we could exhibit some quite 18 reasonable concern about blood donors who are taking dietary 19 supplements that contain a certain amount of unspecified- 20 origin brain, brain-related, brain and pituitary material. 21 If they have done this for more than a sniff or something 22 like that, then, perhaps, they should be deferred as blood 23 donors. 24 That is probably worse than spending six months in 25 the U.K. 1/19/01 3681t2.rtf(845) page 501 http://www.fda.gov/ohrms/dockets/ac/cber01.htm

Advisory Committees: CBER 2001 Meeting Documents

see actual paper;


http://web.archive.org/web/20030830045538/http://www.fda.gov/ohrms/dockets/ac/01/slides/3681s2_07.pdf


Given the science and the information presented, and given the comprehensive array of Natraflex quality control and chain-of-custody procedures, we believe that you can be confident, the our velvet-antler supplements are safe.




Date: Sun, 12 Jan 2003 12:56:44 -0600

Sender: Bovine Spongiform Encephalopathy

From: "Terry S. Singeltary Sr."

Subject: Re: USA ruminant-to-ruminant feed ban warning letters ??? 

With these known facts about nutritional supplements, I think it imperative to include this potential route and source of TSE and warning in this article. Why was it not included? I lost my mother to hvCJD DOD 12/14/97, and I probably will not live long enough to know the route and source of her TSE. Exactly one year previously, to the day 12/14/96, my neighbor also lost his mother to sporadic CJD. Both of these cases were confirmed. but my neighbor's mother had been taking a nutritional supplement called IPLEX, made by Standard Process Co. Here is a listing of potentially TSE-tainted tissues: vacuum dried bovine BRAIN, bone meal, bovine EYE, veal bone, bovine liver powder, bovine adrenal, vacuum dried bovine kidney, and vacuum dried porcine stomach. The CDC came and took the pills, a few years later, I spoke with the late Dr. Gibbs and NIH/CDC and he told me that those particular pills did not show any infectivity with the testing techniques to date, but he also told me - 

1. That the testing techniques at that time may not be sufficient to pick up any 'low-level' infectivity. 
(so, if accumulation plays into this, this could play a big part). 

2. She had been taking these type pills for years, could have been another batch. 

There have been other people die of CJD that were taking these type nutritional supplements. So, my point being, I believe this to warrant a potential risk factor, one not to be ignored, especially in the USA where there are many known TSEs, and where there are many unknowns due to the lack of sufficient TSE testing in USA cattle, and especially since the new findings of Collinge et al, where BSE transmission to the 129-methionine genotype can lead to an alternate phenotype which is indistinguishable from type 2 PrPSc, the commonest sporadic CJD. 

I believe these findings to be of substantial importance: 

DEPARTMENT OF HEALTH AND HUMAN SERVICES FOOD AND DRUG ADMINISTRATION CENTER FOR BIOLOGICS EVALUATION AND RESEARCH TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES ADVISORY COMMITTEE 

Friday, January 19, 2001 

Holiday Inn Bethesda Versailles I and II 8120 Wisconsin Avenue Bethesda, Maryland 2 PARTICIPANTS Paul W. Brown, M.D., Chairperson William Freas, Ph.D., Executive Secretary VOTING MEMBERS Ermias D. Belay, M.D. David C. Bolton, Ph.D. Donald S. Burke, M.D. Dean O. Cliver, Ph.D. Bruce M. Ewenstein, M.D., Ph.D. Peter G. Lurie, M.D. Pedro Piccardo, M.D. Stanley B. Prusiner, M.D. Raymond P. Roos, M.D. Elizabeth S. Williams, D.V.M., Ph.D. VOTING CONSULTANTS Linda A. Detwiler, D.V.M. David Gaylor, Ph.D. Paul R. McCurdy, M.D. Kenrad E. Nelson, M.D. NONVOTING CONSULTANT Susan Leitman, M.D. GUESTS Richard Davey, M.D. Louis Katz, M.D. 

snip... page 501 253 

1 DR. BOLTON: I have an additional question about 2 that. What is the assurance that additional locally sourced 3 tracheas are not added into that manufacturing process, thus 4 boosting the yield, if you will, but being returned to the 5 U.S. as being produced from U.S.-sourced raw material? 6 DR. McCURDY: Are there data to indicate how many 7 grams, or whatever, of infected brain are likely to infect 8 an organism, either animal or man, when taken orally? 9 DR. BROWN: If I am not mistaken, and I can be 10 corrected, I think a half a gram is enough in a cow, orally; 11 in other words, one good dietary-supplement pill. 12 DR. McCURDY: What I am driving at is the question 13 we are asked is really not do we wish to regulate these 14 things coming in. I think the statements about difficulties 15 in regulating things in the future or near future for new 16 regulations were probably accurate. 17 But I think that we could exhibit some quite 18 reasonable concern about blood donors who are taking dietary 19 supplements that contain a certain amount of unspecified- 20 origin brain, brain-related, brain and pituitary material. 21 If they have done this for more than a sniff or something 22 like that, then, perhaps, they should be deferred as blood 23 donors. 24 That is probably worse than spending six months in 25 the U.K. 1/19/01 3681t2.rtf(845) page 501 http://www.fda.gov/ohrms/dockets/ac/cber01.htm There has been a Nutritional Supplement mad cow warning letter circulating around since about 1990. Every year they issue the same letter to the manufactures asking them to please be sure they source their products from BSE-FREE countries. but we all know, the statement BSE-FREE, is a joke, especially in the USA. I sat in on the 50 state emergency BSE conference call, (uninvited guest) and I know for a fact the so-called 'pharmaceutical grade' bovine source herds, bovines that were to never be fed ruminant materials, the USA cannot for certain say that indeed these cattle have never ingested ruminant feed, in fact, some probably had. 

Subject: BSE--U.S. 50 STATE CONFERENCE CALL Jan. 9, 2001 

Date: Tue, 9 Jan 2001 16:49:00 -0800 

From: "Terry S. Singeltary Sr." < flounder@wt.net > 

Reply-To: Bovine Spongiform Encephalopathy < BSE-L@uni-karlsruhe.de > 

To: BSE-L@uni-karlsruhe.de Bovine Spongiform Encephalopathy < BSE-L@UNI-KARLSRUHE.DE > 

Greetings List Members, I was lucky enough to sit in on this BSE conference call today and even managed to ask a question. that is when the trouble started. I submitted a version of my notes to Sandra Blakeslee of the New York Times, whom seemed very upset, and rightly so. "They tell me it is a closed meeting and they will release whatever information they deem fit. Rather infuriating." And I would have been doing just fine, until I asked my question. I was surprised my time to ask a question came so quickly. (understand, these are taken from my notes for now. the spelling of names and such could be off.) 

[host Richard Barns] And now a question from Terry S. Singeltary of CJD Watch. 

[TSS] Yes, Thank You. U.S. cattle - what kind of guarantee can you give for serum or tissue donor herds? [no answer, you could hear in the background, mumbling and "We can't. Have him ask the question again."] 

[host Richard] Could you repeat the question? 

[TSS] U.S. cattle..what kind of guarantee can you give for serum or tissue donor herds? [not sure whom ask this] What group are you with? 

[TSS] CJD Watch, my Mom died from hvCJD and we are tracking CJD world-wide. 

[not sure who is speaking] Could you please disconnect Mr. Singeltary 

[TSS] You are not going to answer my question? 

[not sure whom speaking] NO 

From this point, I was still connected, got to listen and tape the whole conference. at one point someone came on, a woman, and ask again; [unknown woman] What group are you with? 

[TSS] CJD Watch and my Mom died from hvCJD We are trying to tract down CJD and other human TSE's world wide. I was invited to sit in on this from someone inside the USDA/APHIS and that is why I am here. Do you intend on banning me from this conference now? 

At this point the conference was turned back up, and I got to finish listening. They never answered or even addressed my one question, or even addressed the issue. BUT, I will try and give you a run-down for now, of the conference. IF i were another Country, I would take heed to my notes, BUT PLEASE do not depend on them. ask for transcript from: RBARNS@ORA.FDA.GOV 301-827-6906 He would be glad to give you one ;-) Rockville Maryland, Richard Barns Host 


Humans who consume antler velvet as a nutritional supplement are at risk for exposure to prions. 

Chronic Wasting Disease CWD Maine


How can the average person help prevent CWD?

  1. Be careful with commercial feeds. In theory, prions from CWD-infected deer could be present in commercial deer and elk foods if they were formulated with rendering products containing CWD-infected meat and bone meal (MBM). In 1997, the U.S. FDA banned the use of ruminant (deer, cattle, sheep, goat) MBM from commercial feeds for ruminants. Assuming 100% FDA compliance, common commercial feeds used to supplement the diets of captive/farmed or wild cervids would now be CWD-free. However, we don’t know if MBM from CWD-infected deer or elk was ever incorporated into commercial ruminant feeds distributed in Maine prior to 1997, nor do we know if commercial feeds formulated for non-ruminants (horse, swine, poultry, dog, and cat) sometimes contain MBM from CWD-infected deer or elk. To safely feed cervids, use only commercially available products formulated specifically for ruminants, or use supplement-free whole grains like oats.

https://www.maine.gov/ifw/fish-wildlife/wildlife/living-with-wildlife/diseases/chronic-wasting-disease.html


“In 1997, the U.S. FDA banned the use of ruminant (deer, cattle, sheep, goat) MBM from commercial feeds for ruminants.”


Greetings Maine Wildlife Officials on CWD,


I was reading over your page of information on cwd, and the above information is not correct exactly. It was just a voluntary ban for cervid.


Title: Scrapie as the potential origin of chronic wasting disease in white-tailed deer 


Author


LAMBERT, ZOE - Oak Ridge Institute For Science And Education (ORISE)


WEST GREENLEE, HEATHER - Iowa State University


Bian, Jifeng


Cassmann, Eric


Greenlee, Justin

Submitted to: Chronic Wasting Disease Symposium Proceedings 

Publication Type: Abstract Only 

Publication Acceptance Date: 3/1/2023 

Publication Date: 5/30/2023 

Citation: Lambert, Z.J., West Greenlee, H.M., Bian, J., Cassmann, E.D., Greenlee, J.J. 2023. Scrapie as the potential origin of chronic wasting disease in white-tailed deer (abstract). Chronic Wasting Disease Symposium Proceedings. 4th International Chronic Wasting Disease Symposium, May 30-June 3, 2023, Denver, Colorado.

Interpretive Summary:

Technical Abstract: White-tailed deer (WTD) are susceptible to the scrapie agent from sheep after oronasal inoculation. However, results from western blotting these brainstems and lymph nodes are difficult to differentiate from WTD infected with chronic wasting disease (CWD). Tissues were examined via enzyme immunoassay (IDEXX), western blot, immunohistochemistry, and bioassay in cervidized mice (Tg12) in order to assess tissue phenotypes upon subsequent passage of the scrapie agent in WTD. All WTD were euthanized and necropsied following the development of clinical disease and were positive for abnormal prion protein by enzyme immunoassay. Western blotting of retinas from all WTD (second pass) resulted in a similar molecular profile as the retinas of WTD that were inoculated with the agent of scrapie from sheep (first pass). Immunohistochemical staining also was similar between inoculation groups and the initial passage from sheep, but different from WTD inoculated with the agent of CWD. Following bioassays in cervidized mice, all incubation periods were over 300 days, substantially longer than the approximately 200-day incubation period typical with CWD isolates. Based upon analysis of retinal tissues, it is possible to differentiate the agents of scrapie and CWD in WTD by both western blot and immunohistochemistry. Bioassay in cervidized mice further supports this based on incubation periods of WTD-scrapie being approximately twice that of WTD CWD

Submitted to: Chronic Wasting Disease Symposium Proceedings 


Publication Type: Abstract Only 


Publication Acceptance Date: 3/1/2023 


Publication Date: 5/30/2023 


Citation: Lambert, Z.J., West Greenlee, H.M., Bian, J., Cassmann, E.D., Greenlee, J.J. 2023. Scrapie as the potential origin of chronic wasting disease in white-tailed deer (abstract). Chronic Wasting Disease Symposium Proceedings. 4th International Chronic Wasting Disease Symposium, May 30-June 3, 2023, Denver, Colorado.


Interpretive Summary:

Technical Abstract: White-tailed deer (WTD) are susceptible to the scrapie agent from sheep after oronasal inoculation. However, results from western blotting these brainstems and lymph nodes are difficult to differentiate from WTD infected with chronic wasting disease (CWD). Tissues were examined via enzyme immunoassay (IDEXX), western blot, immunohistochemistry, and bioassay in cervidized mice (Tg12) in order to assess tissue phenotypes upon subsequent passage of the scrapie agent in WTD. All WTD were euthanized and necropsied following the development of clinical disease and were positive for abnormal prion protein by enzyme immunoassay. Western blotting of retinas from all WTD (second pass) resulted in a similar molecular profile as the retinas of WTD that were inoculated with the agent of scrapie from sheep (first pass). Immunohistochemical staining also was similar between inoculation groups and the initial passage from sheep, but different from WTD inoculated with the agent of CWD. Following bioassays in cervidized mice, all incubation periods were over 300 days, substantially longer than the approximately 200-day incubation period typical with CWD isolates. Based upon analysis of retinal tissues, it is possible to differentiate the agents of scrapie and CWD in WTD by both western blot and immunohistochemistry. Bioassay in cervidized mice further supports this based on incubation periods of WTD-scrapie being approximately twice that of WTD CWD.


https://www.ars.usda.gov/research/publications/publication/?seqNo115=401927


Title: Transmission of scrapie prions to primate after an extended silent incubation period) 


*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 


*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 


*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 


http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160


***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 


***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 


***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 


http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20


***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***


Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.


https://www.nature.com/articles/srep11573


https://www.ars.usda.gov/research/publications/publication/?seqNo115=361032


CWD TO HUMANS, What If, has it already happened?


***> Currently, there is scientific evidence to suggest that CWD has zoonotic potential; however, no confirmed cases of CWD have been found in humans.


PART 2. TPWD CHAPTER 65. DIVISION 1. CWD


31 TAC §§65.82, 65.85, 65.88


The Texas Parks and Wildlife Commission in a duly noticed meeting on May 25, 2023 adopted amendments to 31 TAC §§65.82, 65.85, and §65.88, concerning Disease Detection and Response, without changes to the proposed text as published in the April 21, 2023, issue of the Texas Register (48 TexReg 2048). The rules will not be republished.


***> Currently, there is scientific evidence to suggest that CWD has zoonotic potential; however, no confirmed cases of CWD have been found in humans.


https://www.sos.texas.gov/texreg/archive/June302023/Adopted%20Rules/31.NATURAL%20RESOURCES%20AND%20CONSERVATION.html#57


17 DETECTION OF CHRONIC WASTING DISEASE PRIONS IN PROCESSED MEATS.


Rebeca Benavente1, Francisca Bravo1,2, Paulina Soto1,2, J. Hunter Reed3, Mitch Lockwood3, Rodrigo Morales1,2


1Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA. 2Universidad Bernardo O’Higgins, Santiago, Chile. 3Texas Parks and Wildlife, Austin, USA


Abstract


The zoonotic potential of chronic wasting disease (CWD) remains unknown. Currently, there are no known natural cases of CWD transmission to humans but increasing evidence suggests that the host range of CWD is not confined only to cervid species. Alarmingly, recent experimental evidence suggests that certain CWD isolates can induce disease in non-human primates. While the CDC strongly recommends determining CWD status in animals prior to consumption, this practice is voluntary. Consequently, it is plausible that a proportion of the cervid meat entering the human food chain may be contaminated with CWD. Of additional concern is that traditional diagnostic techniques used to detect CWD have relatively low sensitivity and are only approved for use in tissues other than those typically ingested by humans. In this study, we analyzed different processed meats derived from a pre-clinical, CWD-positive free-ranging elk. Products tested included filets, sausages, boneless steaks, burgers, ham steaks, seasoned chili meats, and spiced meats. CWD-prion presence in these products were assessed by PMCA using deer and elk substrates. 


***> Our results show positive prion detection in all products. 


***>To confirm the resilience of CWD-prions to traditional cooking methods, we grilled and boiled the meat products and evaluated them for any remnant PMCA seeding activity. Results confirmed the presence of CWD-prions in these meat products suggesting that infectious particles may still be available to people even after cooking. 


***> Our results strongly suggest ongoing human exposure to CWD-prions and raise significant concerns of zoonotic transmission through ingestion of CWD contaminated meat products. 


***> Products tested included filets, sausages, boneless steaks, burgers, ham steaks, seasoned chili meats, and spiced meats. 


***> CWD-prion presence in these products were assessed by PMCA using deer and elk substrates. 


***> Our results show positive prion detection in all products. 


***> Results confirmed the presence of CWD-prions in these meat products suggesting that infectious particles may still be available to people even after cooking.


***> Our results strongly suggest ongoing human exposure to CWD-prions and raise significant concerns of zoonotic transmission through ingestion of CWD contaminated meat products. 


=====


Transmission of prion infectivity from CWD-infected macaque tissues to rodent models demonstrates the zoonotic potential of chronic wasting disease.


Samia Hannaoui1,2, Ginny Cheng1,2, Wiebke Wemheuer3, Walter Schulz-Schaeffer3, Sabine Gilch1,2, Hermann Schatzl1,2 1University of Calgary, Calgary, Canada. 2Calgary Prion Research Unit, Calgary, Canada. 3Institute of Neuropathology, Medical Faculty, Saarland University, Homburg/Saar, Germany


***> Further passage to cervidized mice revealed transmission with a 100% attack rate. 


***> Our findings demonstrate that macaques, considered the best model for the zoonotic potential of prions, were infected upon CWD challenge, including the oral one. 


****> The disease manifested as atypical in macaques and initial transgenic mouse transmissions, but with infectivity present at all times, as unveiled in the bank vole model with an unusual tissue tropism. 


***> Epidemiologic surveillance of prion disease among cervid hunters and people likely to have consumed venison contaminated with chronic wasting disease


=====


https://intcwdsympo.files.wordpress.com/2023/06/final-agenda-with-abstracts.pdf?force_download=true 


Transmission of Cervid Prions to Humanized Mice Demonstrates the Zoonotic Potential of CWD


Aims: Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we aimed to determine the zoonotic potential of CWD using a mouse model for human prion diseases.


Material and Methods: Transgenic mice overexpressing human PrPChomozygous for methionine at codon 129 (tg650) were inoculated intracerebrally with brain homogenates of white-tailed deer infected with Wisc-1/CWD1 or 116AG CWD strains. Mice were monitored for clinical signs and were euthanized at terminal disease. Brains were tested by RT-QuIC, western blot upon PK digestion, and immunohistochemistry; fecal homogenates were analyzed by RT-QuIC. Brain/spinal cord and fecal homogenates of CWD-inoculated tg650 mice were inoculated into tg650 mice or bank voles. Brain homogenates of bank voles inoculated with fecal homogenates of CWD-infected tg650 mice were used for second passage in bank voles.


Results: Here, we provide the strongest evidence supporting the zoonotic potential of CWD prions, and their possible phenotype in humans. Inoculation of mice expressing human PrPCwith deer CWD isolates (strains Wisc-1 and 116AG) resulted in atypical clinical manifestations in > 75% of the mice, with myoclonus as leading clinical sign. Most of tg650brain homogenates were positive for seeding activity in RT-QuIC. Clinical disease and presentation was transmissible to tg650 mice and bank voles. Intriguingly, protease-resistant PrP in the brain of tg650 mice resembled that found in a familial human prion disease and was transmissible upon passage. Abnormal PrP aggregates upon infection with Wisc-1 were detectable in thalamus, hypothalamus, and midbrain/pons regions.


Unprecedented in human prion disease, feces of CWD-inoculated tg650 mice harbored prion seeding activity and infectious prions, as shown by inoculation of bank voles and tg650 with fecal homogenates.


Conclusions: This is the first evidence that CWD can infect humans and cause disease with a distinctive clinical presentation, signature, and tropism, which might be transmissible between humans while current diagnostic assays might fail to detect it. These findings have major implications for public health and CWD-management.


https://www.tandfonline.com/doi/full/10.1080/19336896.2022.2091286


U of M expert warns of increasing likelihood of CWD transmission to humans


Cathy Wurzer and Gretchen BrownJune 5, 2023 1:30 PM


Minnesota scientists have watched chronic wasting disease (CWD) — a fatal, neurological illness — kill deer and elk.


Now, they’re studying its potential to jump to humans.


The University of Minnesota’s Center for Infectious Disease Research and Policy has received more than $1.5 million in state money to start prepping for the possibility of CWD spreading to cows, pigs and possibly humans.


He said transmission to humans has not yet been confirmed, but research suggests it is increasingly likely — especially as the disease continues to spread among deer and elk.


“None of us want to believe this could happen,” he told MPR News host Cathy Wurzer. “But you know, as much as you hope it isn't going to happen, hope is not a strategy.”

Current testing can be done only if animals die or are killed, and lymph nodes or brain matter is removed for testing to verify the disease.


That means captive deer often aren’t tested until they die or show symptoms of the disease, and that’s often too late to stop the spread of the disease.

And there aren’t yet adequate tests for humans, Osterholm said — let alone protocols in place if a human were to test positive for the disease.


Michael Osterholm, Ph.D. is a world-renowned epidemiologist who heads the center.


https://www.mprnews.org/episode/2023/06/05/chronic-wasting-disease-in-humans-us-osterholm-prepares-for-whatif?


PLoS One. 2020; 15(8): e0237410. Published online 2020 Aug 20. doi: 10.1371/journal.pone.0237410 PMCID: PMC7446902 PMID: 32817706 


Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease 


Abstract 


While low-dose exposures to prions of brain or saliva origin prolonged the time from inoculation to first detection of infection, once infection was established, we observed no differences in disease pathogenesis. These studies suggest that the CWD minimum infectious dose approximates 100 to 300 ng CWD-positive brain (or saliva equivalent), and that CWD infection appears to conform more with a threshold than a cumulative dose dynamic.


snip...


The results demonstrate: (a) that the minimum CWD oral infectious dose is vastly lower than historical studies used to establish infection; (b) that a direct relationship exists between dose and incubation time to first prion replication detection in tonsils, irrespective of genotype; (c) that a difference was not discernible between brain vs. saliva source prions in ability to establish infection or in resultant disease course; and (d) that the CWD infection process appears to conform more to a threshold dose than an accumulative dose dynamic. 


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446902/


*** now, let’s see what the authors said way back about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE. see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans” 


From: TSS Subject: CWD aka MAD DEER/ELK TO HUMANS ??? 


Date: September 30, 2002 at 7:06 am PST 


From: "Belay, Ermias" 


To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias" 


Sent: Monday, September 30, 2002 9:22 AM 

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS 


Dear Sir/Madam, In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). 


Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated. 


Ermias Belay, M.D. Centers for Disease Control and Prevention 


-----Original Message----- From: 


Sent: Sunday, September 29, 2002 10:15 AM To: rr26k@nih.govrrace@niaid.nih.govebb8@CDC.GOV 


Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS 


Sunday, November 10, 2002 6:26 PM .......snip........end..............TSS 


https://pubmed.ncbi.nlm.nih.gov/11594928/


> However, to date, no CWD infections have been reported in people. 


sporadic, spontaneous CJD, 85%+ of all human TSE, did not just happen. never in scientific literature has this been proven. if one looks up the word sporadic or spontaneous at pubmed, you will get a laundry list of disease that are classified in such a way; 


sporadic = 54,983 hits 


https://www.ncbi.nlm.nih.gov/pubmed/?term=sporadic 


spontaneous = 325,650 hits 


https://www.ncbi.nlm.nih.gov/pubmed/?term=spontaneous 


key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. 


SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 


*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***


> However, to date, no CWD infections have been reported in people.

key word here is ‘reported’. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can’t, and it’s as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it’s being misdiagnosed as sporadic CJD. …terry


*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***


*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***


http://www.tandfonline.com/doi/full/10.4161/pri.28124?src=recsys


http://www.tandfonline.com/doi/pdf/10.4161/pri.28124?needAccess=true


https://wwwnc.cdc.gov/eid/article/20/1/13-0858_article


CWD TSE PRION AND ZOONOTIC, ZOONOSIS, POTENTIAL


Subject: Re: DEER SPONGIFORM ENCEPHALOPATHY SURVEY & HOUND STUDY 


Date: Fri, 18 Oct 2002 23:12:22 +0100 


From: Steve Dealler 


Reply-To: Bovine Spongiform Encephalopathy Organization: Netscape Online member 


To: BSE-L@ References: 


Dear Terry,


An excellent piece of review as this literature is desperately difficult to get back from Government sites.


What happened with the deer was that an association between deer meat eating and sporadic CJD was found in about 1993. The evidence was not great but did not disappear after several years of asking CJD cases what they had eaten. I think that the work into deer disease largely stopped because it was not helpful to the UK industry...and no specific cases were reported. Well, if you dont look adequately like they are in USA currenly then you wont find any!


Steve Dealler 

=============== 


''The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).''


CREUTZFELDT JAKOB DISEASE SURVEILLANCE IN THE UNITED KINGDOM THIRD ANNUAL REPORT AUGUST 1994


Consumption of venison and veal was much less widespread among both cases and controls. For both of these meats there was evidence of a trend with increasing frequency of consumption being associated with increasing risk of CJD. (not nvCJD, but sporadic CJD...tss) These associations were largely unchanged when attention was restricted to pairs with data obtained from relatives. ...


Table 9 presents the results of an analysis of these data.


There is STRONG evidence of an association between ‘’regular’’ veal eating and risk of CJD (p = .0.01).


Individuals reported to eat veal on average at least once a year appear to be at 13 TIMES THE RISK of individuals who have never eaten veal.


There is, however, a very wide confidence interval around this estimate. There is no strong evidence that eating veal less than once per year is associated with increased risk of CJD (p = 0.51).


The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).


There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).


The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).


snip...


It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).


snip...


In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...


snip...


In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)


snip...see full report ;


http://web.archive.org/web/20090506050043/http://www.bseinquiry.gov.uk/files/yb/1994/08/00004001.pdf


2004 video

Jeff Swann and his Mom, cwd link... sporadic CJD?, CBC NEWS Jeff Schwan sCJD, CWD, and Professor Aguzzi on BSE and sporadic CJD 

????: CBCnews


1997 nvCJD video


Successful transmission of the chronic wasting disease (CWD) agent to white-tailed deer by intravenous blood transfusion 

Najiba Mammadova a b, Eric Cassmann a b, Justin J. Greenlee a Show more Add to Mendeley Share Cite https://doi.org/10.1016/j.rvsc.2020.10.009 

Get rights and content Under a Creative Commons license open access 

Highlights 

• The chronic wasting disease (CWD) agent efficiently transmits between white-tailed deer.

• Blood from CWD infected deer contains infectious prions.

• A single intravenous blood transfusion resulted in CWD transmission with an incubation of 25.6 months for the GG96 recipient.

• The GS96 recipient had a longer incubation of 43.6 months.

Abstract Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSEs) that affects free-ranging and captive cervid species. The infectious agent of CWD may be transmitted from ingestion of prions shed in bodily fluids (e.g. feces, urine, saliva, placenta tissue) of infected animals, contaminated pastures, and/or decomposing carcasses from dead animals. Studies have also demonstrated prion infectivity in whole blood or blood fractions of CWD infected animals. To determine if CWD-infected blood contained sufficient levels of prion infectivity to cause disease, recipient deer were inoculated intravenously (IV) with blood derived from a CWD-infected white-tailed deer. We found that the CWD agent can be successfully transmitted to white-tailed deer by a single intravenous blood transfusion. The incubation period was associated with recipient prion protein genotype at codon 96 with the GG96 recipient incubating for 25.6 months and the GS96 recipient incubating for 43.6 months. This study complements and supports an earlier finding that CWD can be transmitted to deer by intravenous blood transfusion from white-tailed deer with CWD.

SNIP...

While a previous and larger study showed similar results, we determined that only 100 mL of CWD-infected blood (~2.5 times less than previously shown in (Mathiason et al., 2010)) contained sufficient levels of prion infectivity to cause disease. The identification of blood-borne transmission of the CWD agent is important in reinforcing the risk of exposure to CWD via blood as well as the possibility of hematogenous transmission of the CWD agent through insect vector. 


PLoS One. 2020; 15(8): e0237410. Published online 2020 Aug 20. doi: 10.1371/journal.pone.0237410 PMCID: PMC7446902 PMID: 32817706 

Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease 

See PLoS One. 2021 June 10; 16(6): e0253356. Associated Data Data Availability Statement 

Abstract 

The minimum infectious dose required to induce CWD infection in cervids remains unknown, as does whether peripherally shed prions and/or multiple low dose exposures are important factors in CWD transmission. With the goal of better understand CWD infection in nature, we studied oral exposures of deer to very low doses of CWD prions and also examined whether the frequency of exposure or prion source may influence infection and pathogenesis. We orally inoculated white-tailed deer with either single or multiple divided doses of prions of brain or saliva origin and monitored infection by serial longitudinal tissue biopsies spanning over two years. We report that oral exposure to as little as 300 nanograms (ng) of CWD-positive brain or to saliva containing seeding activity equivalent to 300 ng of CWD-positive brain, were sufficient to transmit CWD disease. This was true whether the inoculum was administered as a single bolus or divided as three weekly 100 ng exposures. However, when the 300 ng total dose was apportioned as 10, 30 ng doses delivered over 12 weeks, no infection occurred. While low-dose exposures to prions of brain or saliva origin prolonged the time from inoculation to first detection of infection, once infection was established, we observed no differences in disease pathogenesis. These studies suggest that the CWD minimum infectious dose approximates 100 to 300 ng CWD-positive brain (or saliva equivalent), and that CWD infection appears to conform more with a threshold than a cumulative dose dynamic.

snip...

In conclusion, we have attempted to model and better understand CWD infection relative to natural exposure. The results demonstrate: 

(a) that the minimum CWD oral infectious dose is vastly lower than historical studies used to establish infection; 

(b) that a direct relationship exists between dose and incubation time to first prion replication detection in tonsils, irrespective of genotype; 

(c) that a difference was not discernible between brain vs. saliva source prions in ability to establish infection or in resultant disease course; and 

(d) that the CWD infection process appears to conform more to a threshold dose than an accumulative dose dynamic. 


GET THOSE DAMN DEER TESTED FOR CWD TSE PRION BEFORE TAKING THEM HOME AND FEEDING TO YOUR FAMILY AND FRIENDS !!!

Terry S. Singeltary Sr.