Tuesday, December 12, 2017

Creutzfeldt Jakob Disease CJD National Prion Disease Pathology Surveillance Center Cases Examined to December 14, 2017

December 14, 1997, 20 years ago today, i lost my Mom to the Heidenhain Variant of Creutzfeldt Jakob Disease hvCJD, an exceedingly rare strain of the infamous sporadic CJD's. i simply made a promise to Mom, never forget, and never let them forget. i knew then the thought of this disease being restricted to only the UK was BSe, back then, what i call the UKBSEnvCJD only theory. that theory today, has been proven wrong, that the UK, and it's human population and cattle, were the only ones that could get this damn disease. it was BSe, back in 1985 and 1995, and it's BSe today in 2017. ...terry

National Prion Disease Pathology Surveillance Center Cases Examined1

(November 14, 2017)

Year Total

Referrals2 Prion Disease Sporadic Familial Iatrogenic vCJD

1997 & earlier 170 104 90 13 1 0


89 53 45 7 1 0

1999 121 73 65 7 1 0

2000 145 101 89 12 0 0

2001 209 118 110 8 0 0

2002 242 144 124 18 2 0

2003 258 160 137 21 2 0

2004 314 179 161 17 0 1(3)

2005 327 178 156 21 1 0

2006 367 181 161 17 1 2(4)

2007 372 208 189 19 0 0

2008 385 222 206 16 0 0

2009 399 233 212 20 1 0

2010 402 246 218 28 0 0

2011 394 240 216 24 0 0

2012 410 241 218 23 0 0

2013 415 257 222 34 1 0

2014 355 210 186 22 1 1(5)

2015 400 262 242 20 0 0

2016 395 276 247 29 0 0

2017 283 193 167 12 0 0

TOTAL 64526 38797 34618 3889 12 4 

1 Listed based on the year of death or, if not available, on year of referral; 

2 Cases with suspected prion disease for which brain tissue was submitted; 

3 Disease acquired in the United Kingdom; 

4 Disease acquired in the United Kingdom in one case and in Saudi Arabia in the other;

5 Disease possibly acquired in a Middle Eastern or Eastern European country; 

*6 Includes 17 cases in which the diagnosis is pending, and 20 inconclusive cases; 

**7 Includes 14 (14 from 2017) cases with type determination pending in which the diagnosis of vCJD has been excluded. 

***8 The sporadic cases include 3368 cases of sporadic Creutzfeldt-Jakob disease (sCJD), 61 cases of Variably Protease-Sensitive Prionopathy (VPSPr) and 32 cases of sporadic Fatal Insomnia (sFI).

****9 Total does not include 232 Familial cases diagnosed by blood test only.

Rev 11/16/2017

Texas sporadic Creutzfeldt Jakob Disease steadily rising...with 2016 confirmed and probable case count being highest since 2007.

THURSDAY, JULY 13, 2017 




Experimental transfusion of variant CJD-infected blood reveals previously uncharacterised prion disorder in mice and macaque

''On secondary and tertiary transmissions, however, the proportion of PrPres positive animals gradually increased to almost 100%. 

''Recent communications suggest that a similar situation might exist in other models of experimental exposure to prions involving swine32 and cattle33.'' 

''Experimental transfusion of variant CJD-infected blood reveals previously uncharacterised prion disorder in mice and macaque''

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France
Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.
***thus questioning the origin of human sporadic cases***
***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.
 Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.

Saturday, April 23, 2016


Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,

Natalia Fernandez-Borges a. and Alba Marin-Moreno a

"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France

Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion. Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.

To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.

These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.

Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016 

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online 

Transmission of scrapie prions to primate after an extended silent incubation period

Emmanuel E. Comoy, Jacqueline Mikol, Sophie Luccantoni-Freire, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Valérie Durand, Capucine Dehen, Olivier Andreoletti, Cristina Casalone, Juergen A. Richt, Justin J. Greenlee, Thierry Baron, Sylvie L. Benestad, Paul Brown & Jean-Philippe Deslys Scientific Reports 5, Article number: 11573 (2015)


Download Citation

EpidemiologyNeurological manifestationsPrion diseases

Received: 16 February 2015

Accepted: 28 May 2015

Published online: 30 June 2015


Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.


In addition to previous studies on scrapie transmission to primate1,8,9 and the recently published study on transgenic humanized mice13, our results constitute new evidence for recommending that the potential risk of scrapie for human health should not be dismissed. Indeed, human PrP transgenic mice and primates are the most relevant models for investigating the human transmission barrier. To what extent such models are informative for measuring the zoonotic potential of an animal TSE under field exposure conditions is unknown. During the past decades, many protective measures have been successfully implemented to protect cattle from the spread of c-BSE, and some of these measures have been extended to sheep and goats to protect from scrapie according to the principle of precaution. Since cases of c-BSE have greatly reduced in number, those protective measures are currently being challenged and relaxed in the absence of other known zoonotic animal prion disease. We recommend that risk managers should be aware of the long term potential risk to human health of at least certain scrapie isolates, notably for lymphotropic strains like the classical scrapie strain used in the current study. Relatively high amounts of infectivity in peripheral lymphoid organs in animals infected with these strains could lead to contamination of food products produced for human consumption. Efforts should also be maintained to further assess the zoonotic potential of other animal prion strains in long-term studies, notably lymphotropic strains with high prevalence like CWD, which is spreading across North America, and atypical/Nor98 scrapie (Nor98)50 that was first detected in the past two decades and now represents approximately half of all reported cases of prion diseases in small ruminants worldwide, including territories previously considered as scrapie free. Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.


***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***


***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***


why do we not want to do TSE transmission studies on chimpanzees $

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.



Volume 2: Science 

4. The link between BSE and vCJD 


4.29 The evidence discussed above that vCJD is caused by BSE seems overwhelming. Uncertainties exist about the cause of CJD in farmers, their wives and in several abattoir workers. It seems that farmers at least might be at higher risk than others in the general population. 1 Increased ascertainment (ie, increased identification of cases as a result of greater awareness of the condition) seems unlikely, as other groups exposed to risk, such as butchers and veterinarians, do not appear to have been affected. The CJD in farmers seems to be similar to other sporadic CJD in age of onset, in respect to glycosylation patterns, and in strain-typing in experimental mice. Some farmers are heterozygous for the methionine/valine variant at codon 129, and their lymphoreticular system (LRS) does not contain the high levels of PrPSc found in vCJD. It remains a remote possibility that when older people contract CJD from BSE the resulting phenotype is like sporadic CJD and is distinct from the vCJD phenotype in younger people.

4.30 Estimates of the likely scale of a possible epidemic of vCJD are wide-ranging and the subject of much debate. To know the likely number of cases is very important, not least to enable preparations to be made for the care of victims, as well as to be able to draw up guidelines to reduce the risk of transmission from infected but asymptomatic people. Preliminary results of the study examining tonsil and appendix material for signs of infection were not informative in this regard and full results are awaited. A blood test that would allow the widespread screening of the population by a simple method is still being sought...THE BSE INQUIRY


Subject: ***CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat

CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat 

Chronic Wasting Disease (CWD) 


If CWD could spread to people, it would most likely be through eating of infected deer and elk. In a 2006-2007 CDC survey of U.S. residents, nearly 20 percent of those surveyed said they had hunted deer or elk and more than two-thirds said they had eaten venison or elk meat. However, to date, no CWD infections have been reported in people. 

Hunters must consider many factors when determining whether to eat meat from deer and elk harvested from areas with CWD, including the level of risk they are willing to accept. Hunters harvesting wild deer and elk from areas with reported CWD should check state wildlife and public health guidance to see whether testing of animals is recommended or required in a given state or region. In areas where CWD is known to be present, CDC recommends that hunters strongly consider having those animals tested before eating the meat. 

Tests for CWD are monitoring tools that some state wildlife officials use to look at the rates of CWD in certain animal populations. Testing may not be available in every state, and states may use these tests in different ways. A negative test result does not guarantee that an individual animal is not infected with CWD, but it does make it considerably less likely and may reduce your risk of exposure to CWD. 

To be as safe as possible and decrease their potential risk of exposure to CWD, hunters should take the following steps when hunting in areas with CWD: 

Do not shoot, handle or eat meat from deer and elk that look sick or are acting strangely or are found dead (road-kill). When field-dressing a deer: Wear latex or rubber gloves when dressing the animal or handling the meat. Minimize how much you handle the organs of the animal, particularly the brain or spinal cord tissues. Do not use household knives or other kitchen utensils for field dressing. Check state wildlife and public health guidance to see whether testing of animals is recommended or required. Recommendations vary by state, but information about testing is available from many state wildlife agencies. Strongly consider having the deer or elk tested for CWD before you eat the meat. If you have your deer or elk commercially processed, consider asking that your animal be processed individually to avoid mixing meat from multiple animals. If your animal tests positive for CWD, do not eat meat from that animal. The U.S. Department of Agriculture’s Animal and Plant Health Inspection Service regulates commercially farmed deer and elk. The agency operates a national CWD herd certification program. As part of the voluntary program, states and individual herd owners agree to meet requirements meant to decrease the risk of CWD in their herds. Privately owned herds that do not participate in the herd certification program may be at increased risk for CWD. 

Page last reviewed: August 17, 2017 Page last updated: August 17, 2017 Content source: Centers for Disease Control and Prevention National Center for Emerging and Zoonotic Infectious Diseases (NCEZID) Division of High-Consequence Pathogens and Pathology (DHCPP) 

 > However, to date, no CWD infections have been reported in people. 

key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 


*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).*** 

Molecular Barriers to Zoonotic Transmission of Prions 

*** chronic wasting disease, there was no absolute barrier to conversion of the human prion protein. 

*** Furthermore, the form of human PrPres produced in this in vitro assay when seeded with CWD, resembles that found in the most common human prion disease, namely sCJD of the MM1 subtype. 


CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat 

Prion 2017 Conference Abstracts CWD


First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress 

Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 

University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 

This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. 

Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. 

At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 





 TUESDAY, JUNE 13, 2017


First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress

TUESDAY, JULY 04, 2017


TUESDAY, JUNE 13, 2017

PRION 2017 CONFERENCE ABSTRACT Chronic Wasting Disease in European moose is associated with PrPSc features different from North American CWD

Wednesday, May 24, 2017 

PRION2017 CONFERENCE VIDEO UPDATE 23 – 26 May 2017 Edinburgh UPDATE 1 

SATURDAY, JULY 29, 2017 

Risk Advisory Opinion: Potential Human Health Risks from Chronic Wasting Disease CFIA, PHAC, HC (HPFB and FNIHB), INAC, Parks Canada, ECCC and AAFC 

*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.

PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer
Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation
It is unlikely that CWD will be eradicated from free-ranging cervids, and the disease is likely to continue to spread geographically [10]. However, the potential that white-tailed deer may be susceptible to sheep scrapie by a natural route presents an additional confounding factor to halting the spread of CWD. This leads to the additional speculations that
1) infected deer could serve as a reservoir to infect sheep with scrapie offering challenges to scrapie eradication efforts and
2) CWD spread need not remain geographically confined to current endemic areas, but could occur anywhere that sheep with scrapie and susceptible cervids cohabitate.
This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by intracerebral inoculation with a high attack rate and that the disease that results has similarities to CWD. These experiments will be repeated with a more natural route of inoculation to determine the likelihood of the potential transmission of sheep scrapie to white-tailed deer. If scrapie were to occur in white-tailed deer, results of this study indicate that it would be detected as a TSE, but may be difficult to differentiate from CWD without in-depth biochemical analysis.
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer
Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like.
*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.
Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.
*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.

TUESDAY, MARCH 28, 2017 

*** Passage of scrapie to deer results in a new phenotype upon return passage to sheep ***


***In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research, however, suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008). It is apparent, though, that CWD is affecting wild and farmed cervid populations in endemic areas with some deer populations decreasing as a result.


price of prion poker goes up for cwd to cattle;

Monday, April 04, 2016

*** Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle ***

cwd to pig, orally ;


Location: Virus and Prion Research

Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease

Author item Moore, Sarah item Kunkle, Robert item Kondru, Naveen item Manne, Sireesha item Smith, Jodi item Kanthasamy, Anumantha item West Greenlee, M item Greenlee, Justin

Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 3/15/2017 Publication Date: N/A Citation: N/A Interpretive Summary:

Technical Abstract: Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study, neurological signs consistent with prion disease were observed only in one pig: an intracranially challenged pig that was euthanized at 64 months post-challenge. The purpose of this study was to use an antigen-capture immunoassay (EIA) and real-time quaking-induced conversion (QuIC) to determine whether PrPSc is present in lymphoid tissues from pigs challenged with the CWD agent.

Methods: At two months of age, crossbred pigs were challenged by the intracranial route (n=20), oral route (n=19), or were left unchallenged (n=9). At approximately 6 months of age, the time at which commercial pigs reach market weight, half of the pigs in each group were culled (<6 challenge="" groups="" month="" pigs="" remaining="" the="">6 month challenge groups) were allowed to incubate for up to 73 months post challenge (mpc). The retropharyngeal lymph node (RPLN) was screened for the presence of PrPSc by EIA and immunohistochemistry (IHC). The RPLN, palatine tonsil, and mesenteric lymph node (MLN) from 6-7 pigs per challenge group were also tested using EIA and QuIC.

Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 5="" 6="" at="" by="" detected="" eia.="" examined="" group="" in="" intracranial="" least="" lymphoid="" month="" months="" of="" one="" pigs="" positive="" prpsc="" quic="" the="" tissues="" was="">6 months group, 5/6 pigs in the oral <6 4="" and="" group="" months="" oral="">6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). Conclusions:

This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge.

CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease.

Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.



While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...

we cannot rule out the possibility that unrecognised subclinical spongiform encephalopathy could be present in British pigs though there is no evidence for this: only with parenteral/implantable pharmaceuticals/devices is the theoretical risk to humans of sufficient concern to consider any action.

Our records show that while some use is made of porcine materials in medicinal products, the only products which would appear to be in a hypothetically ''higher risk'' area are the adrenocorticotrophic hormone for which the source material comes from outside the United Kingdom, namely America China Sweden France and Germany. The products are manufactured by Ferring and Armour. A further product, ''Zenoderm Corium implant'' manufactured by Ethicon, makes use of porcine skin - which is not considered to be a ''high risk'' tissue, but one of its uses is described in the data sheet as ''in dural replacement''. This product is sourced from the United Kingdom.....

snip...see much more here ;


Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease

MONDAY, AUGUST 14, 2017 

Experimental transmission of the chronic wasting disease agent to swine after oral or intracranial inoculation

TUESDAY, APRIL 18, 2017 




''I have a neighbor who is a dairy farmer. He tells me that he knows of several farmers who feed their cattle expired dog food. These farmers are unaware of any dangers posed to their cattle from the pet food contents. For these farmers, the pet food is just another source of protein.''



FDA 589.2000, Section 21 C.F.R. Animal Proteins Prohibited in Ruminant Feed WARNING Letters and FEED MILL VIOLATIONS OBSERVATIONS 2017 to 2006


What is the risk of chronic wasting disease being introduced into Great Britain? A Qualitative Risk Assessment October 2012

Several different animal feed products are imported into GB from North America. These include processed pet foods and consignments of unfinished feed ingredients for use in animal feed. The amount of imported feed, including pet food, that contains cervid protein is unknown and identified as a significant data gap. As non-ruminant animal feed may be produced with cervid protein (but not from positive CWD animals) in the United States (US), there is a greater than negligible risk that feed with cervid protein is imported from North America into GB. There is, however, uncertainty associated with this estimate.


In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible. For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.


Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.


What is the risk of chronic wasting disease being introduced into Great Britain? A Qualitative Risk Assessment October 2012

Thursday, April 07, 2016

What is the risk of chronic wasting disease being introduced into Great Britain? An updated Qualitative Risk Assessment March 2016


EFSA asked to review risk from processed animal proteins in feed PIG PAP and CWD TSE Prion Oral Transmission

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. 

*** This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada.

*** It also suggests a similar cause or source for atypical BSE in these countries. ***


Molecular characterization of BSE in Canada

Jianmin Yang 1 , Sandor Dudas 2 , Catherine Graham 2 , Markus Czub 3 , Tim McAllister 1 , Stefanie Czub 1 1 Agriculture and Agri-Food Canada Research Centre, Canada; 2 National and OIE BSE Reference Laboratory, Canada; 3 University of Calgary, Canada

Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle. Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres.

Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.

Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal-specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. It also suggests a similar cause or source for atypical BSE in these countries.

see page 176 of 201 pages...tss

*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply;

***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE.

***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.

*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***

Posted by Terry S. Singeltary Sr. on 03 Jul 2015 at 16:53 GMT

Thursday, November 16, 2017 

Texas Natural Meats Recalls Beef Products Due To Possible Specified Risk Materials Contamination

SUNDAY, JULY 23, 2017

atypical L-type BASE Bovine Amyloidotic Spongiform Encephalopathy BSE TSE PRION

SUNDAY, JULY 23, 2017

Experimental Infection of Cattle With a Novel Prion Derived From Atypical H-Type Bovine Spongiform Encephalopathy


JAVMA NEWS Atypical BSE found in Alabama cow September 01, 2017

THURSDAY, JULY 20, 2017 

USDA OIE Alabama Atypical L-type BASE Bovine Spongiform Encephalopathy BSE animal feeds for ruminants rule, 21 CFR 589.200

Saturday, July 23, 2016



Monday, June 20, 2016 

Specified Risk Materials SRMs BSE TSE Prion Program 

Final Feed Investigation Summary - California BSE Case - July 2012

On Tuesday, April 24, 2012, the California Department of Food and Agriculture (CDFA) and the U.S. Food and Drug Administration (FDA) were informed by the CDFA Animal Health Safety Service (AHSS) Division that a brain sample collected from a dead cow at the Baker Commodities rendering transfer station in Hanford, California tested positive for L-type atypical bovine spongiform encephalopathy (BSE). While cases of classical BSE have been clearly linked to the use of contaminated meat and bone meal (MBM) as an ingredient in cattle feed, the origin of atypical strains of BSE is unknown. Given the scientific uncertainty about the origin of the L-type strain of BSE, FDA and CDFA conducted a feed investigation to try to determine if any feed supplied to the index premises since the birth of the index cow could have been manufactured with or cross-contaminated by ingredients that are prohibited for use in feed for ruminant animals.

FDA published BSE feed regulations in 1997 and 2008 to protect against cattle exposure to the BSE agent through animal feed. The 1997 “feed ban” (21 CFR 589.2000) prohibits feeding mammalian protein, with certain exceptions such as for milk products and blood products, to ruminants. The 2008 “enhanced feed rule” (21 CFR 589.2001) addresses concerns that the 1997 rule might not completely eliminate the potential for cattle to be exposed to infectivity as a result of cross-contamination during feed manufacturing or distribution, or as a result of on-farm misfeeding of swine feed, poultry feed, or pet food to cattle. To further reduce the BSE risks associated with cross-contamination and on-farm misfeeding, the 2008 rule banned the use of the highest risk cattle tissues - the brain and spinal cord from cattle 30 months of age and older - in all animal feed. To investigate whether the BSE positive cow in California had access to feed ingredients containing bovine origin MBM, the CDFA and the FDA visited the index dairy farm where they evaluated the dairy farm’s compliance with BSE feed regulations, obtained the feeding history of the index cow since her birth in September 2001 to the present, and identified all feed suppliers to those premises where the cow had resided since birth. An inspection for compliance with 21 CFR 589.2000 and 589.2001 (a BSE inspection) was then conducted at each of the feed suppliers identified. In addition, inspection reports from all previous inspections at the identified feed firms were reviewed to determine each firm’s history of using prohibited material in feed manufacturing, as well as each firm’s history of compliance with FDA’s BSE feed regulations. Particular attention was focused on controls in place at each facility to prevent cross contamination.

Review of the BSE inspection histories found that compliance with BSE feed regulations was excellent. None of the facilities had used prohibited material in their feed manufacturing during the entire period of interest. All historical BSE inspections at the 12 feed suppliers were NAI (no action indicated) for all inspections conducted over the period of interest. One facility had minor violations (VAI, or voluntary action indicated) for medicated feed good manufacturing practices (GMP) deficiencies. Prior to the period of interest, one firm was OAI for an April 2000 inspection because the firm had inadequate cleanout procedures and failed to label product potentially containing prohibited material with the required caution statement “do not feed to cattle or other ruminants”. The next inspection of that facility, in May 2001 (6 months before the date of birth of the index cow), found that the facility no longer used prohibited material.

Although none of the facilities had used prohibited material in their feed manufacturing during the entire period of interest, one facility distributed prohibited material but did not use it to manufacture feeds. This facility maintained separation between its manufactured feed and products for distribution that contained prohibited material. Six facilities used only vegetable origin protein sources such as whole and rolled corn, soybean meal, canola meal, distillers dried grain, corn gluten, wheat, almond hulls, rolled barley, cottonseed, sunflower meal, and beet pulp. Five facilities used blood meal (one of the five used only porcine origin blood meal). Two used feather meal, two used fish meal, and one used porcine origin MBM. One facility processed and manufactured with poultry waste. Three facilities distributed pet food or sold it to retail customers. All three of these facilities kept the pet food in an area of the facility separated from feed manufacturing, with posted signs saying “do not feed to cattle or other ruminants.”

The reporting form used to conduct BSE inspections requires the investigator to verify that facilities that do not use prohibited material have safeguards in place to assure that the facility does not receive prohibited material. All 12 firms had procedures in place for obtaining written certification or other assurances from suppliers that products contained no prohibited material. Written procedures at each facility also required that plant personnel review labels of incoming product for prohibited ingredients. The inspection reports showed that each feed supplier also had appropriate procedures for ensuring that vehicles used to haul incoming or outgoing product had either not previously hauled product containing prohibited material, or had been properly cleaned. This feed investigation found that no feed suppliers to the index premises processed with prohibited material during the period of interest, that all feed facilities obtained appropriate assurances from their suppliers that incoming ingredients did not contain prohibited material, and that vehicle inspections and/or driver certifications were used by all facilities to ensure that products were not transported in vehicles that had hauled product containing prohibited material in the previous load. Based on these findings, the feed investigation team did not identify any conditions where feed ingredients supplied to the index premises had been manufactured with prohibited material, or where feed suppliers to the index premises did not have adequate safeguards in place to prevent cross-contamination during feed manufacture, storage, or transportation.

Additional Information

USDA Summary Report - California BSE Case Investigation - July 2012 

Wednesday, April 25, 2012



Saturday, August 4, 2012

*** Final Feed Investigation Summary - California BSE Case - July 2012

THURSDAY, JULY 13, 2017 

EFSA BSE Sixty cases of mad cow disease since 2001 breached feed ban likely the cause 

Scientists investigate origin of isolated BSE cases


Canada and USA Scrapie BSE TSE Prion Update October 5 2017

MONDAY, JULY 17, 2017 

National Scrapie Eradication Program May 2017 Monthly Report Fiscal Year 2017


OIE Opens Texas Office Bovine Spongiform Encephalopathy BSE, Scrapie, CWD, TSE Prion

LOL! Laugh Out Loud...$$$

Prion seeding activity and infectivity in skin samples from patients with sporadic Creutzfeldt-Jakob disease

Christina D. Orrú1,*, Jue Yuan2,*, Brian S. Appleby2,3,4,*, Baiya Li2,5,*, Yu Li2,6, Dane Winner7, Zerui Wang2,8, Yi-An Zhan2,6, Mark Rodgers2, Jason Rarick2, Robert E. Wyza9, Tripti Joshi9, Gong-Xian Wang6, Mark L. Cohen2, Shulin Zhang2, Bradley R. Groveman1, Robert B. Petersen10, James W. Ironside11, Miguel E. Quiñones-Mateu2,7, Jiri G. Safar2,4, Qingzhong Kong2,3,4,12,†, Byron Caughey1,† and Wen-Quan Zou2,3,4,6,8,12,13,†

 See all authors and affiliations

Science Translational Medicine 22 Nov 2017:

Vol. 9, Issue 417, eaam7785

DOI: 10.1126/scitranslmed.aam7785 

Prions in unexpected places

Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, can be transmitted via neurosurgical instruments or corneal or dura mater transplants contaminated by infectious prions. Some epidemiological studies have associated sCJD risk with surgeries that involve the skin, but whether the skin of sCJD patients contains prion infectivity is not known. Orrú et al. now report detectable prion seeding activity and infectivity in skin from sCJD patients, although at much lower levels compared to brain tissues from sCJD patients. These data suggest that there may be a potential for iatrogenic sCJD transmission through skin.


Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, is transmissible through iatrogenic routes due to abundant infectious prions [misfolded forms of the prion protein (PrPSc)] in the central nervous system (CNS). Some epidemiological studies have associated sCJD risk with non-CNS surgeries. We explored the potential prion seeding activity and infectivity of skin from sCJD patients. Autopsy or biopsy skin samples from 38 patients [21 sCJD, 2 variant CJD (vCJD), and 15 non-CJD] were analyzed by Western blotting and real-time quaking-induced conversion (RT-QuIC) for PrPSc. Skin samples from two patients were further examined for prion infectivity by bioassay using two lines of humanized transgenic mice. Western blotting revealed dermal PrPSc in one of five deceased sCJD patients and one of two vCJD patients. However, the more sensitive RT-QuIC assay detected prion seeding activity in skin from all 23 CJD decedents but not in skin from any non-CJD control individuals (with other neurological conditions or other diseases) during blinded testing. Although sCJD patient skin contained ~103- to 105-fold lower prion seeding activity than did sCJD patient brain tissue, all 12 mice from two transgenic mouse lines inoculated with sCJD skin homogenates from two sCJD patients succumbed to prion disease within 564 days after inoculation. Our study demonstrates that the skin of sCJD patients contains both prion seeding activity and infectivity, which raises concerns about the potential for iatrogenic sCJD transmission via skin.

Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works


Prion seeding activity and infectivity in skin samples from patients with sporadic Creutzfeldt-Jakob disease


NIH scientists and collaborators find infectious prion protein in skin of CJD patients

TUESDAY, JUNE 20, 2017 

Prion 2017 Conference Transmissible prions in the skin of Creutzfeldt-Jakob disease patients

FRIDAY, AUGUST 11, 2017 

Infectivity in bone marrow from sporadic CJD patients

Bioassays in transgenic mice expressing the human prion protein revealed the presence of unexpectedly high levels of infectivity in the bone marrow from seven out of eight sCJD cases. These findings may explain the presence of blood-borne infectivity in sCJD patients. They also suggest that the distribution of prion infectivity in peripheral tissues in sCJD patients could be wider than currently believed, with potential implications for the iatrogenic transmission risk of this disease. 


P120 Early preclinical detection of prions in blood of macaques peripherally infected with the variant CJD agent 

Luis Concha1,2,Claudio Soto1

 1University Of Texas, Houston, United States, 2Universidad de los Andes, Santiago, Chile 

Aim: Preclinical detection of prions in blood of experimentally infected non-human primates. The detection of prions in blood of patients affected by variant Creutzfeldt-Jakob disease (vCJD) has been recently achieved, by means of the protein misfolding cyclic amplification (PMCA) technique (Concha- Marambio et. al., 2016). Moreover, a few blood samples were shown to contain prions before disease onset (Bougard et. al. 2016). However, the unknown time of infection makes impossible to determine when in the incubation period prions can be detected in blood. Thus, we studied blood samples longitudinally collected from 3 macaques infected with the macaque adapted vCJD agent (m-vCJD). 

Methods: Three macaques were peripherally infected with m-vCJD (McDowell et. al., 2016). Blood was collected longitudinally, starting 2 months post inoculation (mpi) until the endpoint of the disease. The samples were divided in three panels: early preclinical (2 to 12 mpi), late preclinical (12 mpi to onset) and clinical (onset to final bleed). These samples were kindly provided by Dr Luisa Gregory as de-identified samples. The PMCA protocol previously used was optimized to detect prions in blood of vCJD patients, for the detection of m-vCJD prions in macaque blood, using human PrP from transgenic mice as substrate. The substrate was supplemented with 100 ug/ml heparin and few modifications were introduced into the PMCA protocol. 

Results: m-vCJD prions from macaque brain homogenate (BH) were amplified at similar efficiencies vCJD prions (10-10 to 10-11 dilutions of BH). Prions were readily detected in whole blood, buffy coat and plasma during the clinical phase of the disease. Preclinical samples were more challenging to amplify. However, after PMCA optimization, we could detect with high sensitivity and specificity all the early and late preclinical samples. Our results show that m-vCJD prions from macaque blood can be detected at least ~800 days before the onset of disease. 

Conclusions: PMCA was adapted for the efficient amplification of m-vCJD prions present in blood of macaques peripherally challenged with the vCJD agent. Our results suggest that PMCA can detect prions in blood more than 800 days before onset with high sensitivity and specificity. Since the first sample was collected 2 mpi and it was positive, PMCA can probably detect prions in blood weeks after inoculation. Overall, our results show the consistent and reproducible preclinical detection of prions in macaques, which suggest that this protocol could be used in humans for pre-symptomatic detection of carriers infected with vCJD prions. 



MONDAY, JUNE 19, 2017 

PRION 2017 P20 Descriptive epidemiology of human prion diseases in Japan: a prospective 16-year surveillance study

Japan Prion Disease Increasing Annually to 2.3 patients per 1 million populations in 2014

MONDAY, JUNE 19, 2017 

PRION 2017 CONFERENCE ABSTRACT P61 vCJD strain properties in a Spanish mother and son replicate as those of a young UK case


Minimise transmission risk of CJD and vCJD in healthcare settings Updated 10 August 2017


Creutzfeldt Jakob Disease United States of America USA and United Kingdom UK Increasing and Zoonotic Pontential From Different Species


*** Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States revisited 2017 Singeltary et al


Blood-derived amyloid-β protein induces Alzheimer’s disease pathologies

Tuesday, December 12, 2017 

Neuropathology of iatrogenic Creutzfeldt–Jakob disease and immunoassay of French cadaver-sourced growth hormone batches suggest possible transmission of tauopathy and long incubation periods for the transmission of Abeta pathology


Creutzfeldt-Jakob disease: recent developments

Sunday, December 04, 2016 

Heidenhain variant of Creutzfeldt–Jakob disease in a patient who had bovine bioprosthetic valve implantation 






Atypical L-Type Bovine Spongiform Encephalopathy (L-BSE) Transmission to Cynomolgus Macaques, a Non-Human Primate

Jpn. J. Infect. Dis., 64 (1), 81-84, 2011

To see a printable version of the article in the Adobe file format, click this [PDF] link.

Short Communication

Atypical L-Type Bovine Spongiform Encephalopathy (L-BSE) Transmission to Cynomolgus Macaques, a Non-Human Primate

Fumiko Ono, Naomi Tase1, Asuka Kurosawa3, Akio Hiyaoka, Atsushi Ohyama, Yukio Tezuka, Naomi Wada2, Yuko Sato3, Minoru Tobiume3, Ken'ichi Hagiwara4, Yoshio Yamakawa4*, Keiji Terao1, and Tetsutaro Sata3

The Corporation for Production and Research of Laboratory Primates, Tsukuba 305-0843; 1Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Tsukuba 305-0843; 2Department of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515; and 3Department of Pathology and 4Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan

(Received December 9, 2010. Accepted December 22, 2010)


*Corresponding author: Mailing address: Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan. Tel: +81-3-5285-1111 ext. 2127, Fax: +81-3-5285-1157, E-mail: yamakawa@nih.go.jp


SUMMARY: A low molecular weight type of atypical bovine spongiform encephalopathy (L-BSE) was transmitted to two cynomolgus macaques by intracerebral inoculation of a brain homogenate of cattle with atypical BSE detected in Japan. They developed neurological signs and symptoms at 19 or 20 months post-inoculation and were euthanized 6 months after the onset of total paralysis. Both the incubation period and duration of the disease were shorter than those for experimental transmission of classical BSE (C-BSE) into macaques. Although the clinical manifestations, such as tremor, myoclonic jerking, and paralysis, were similar to those induced upon C-BSE transmission, no premonitory symptoms, such as hyperekplexia and depression, were evident. Most of the abnormal prion protein (PrPSc) was confined to the tissues of the central nervous system, as determined by immunohistochemistry and Western blotting. The PrPSc glycoform that accumulated in the monkey brain showed a similar profile to that of L-BSE and consistent with that in the cattle brain used as the inoculant. PrPSc staining in the cerebral cortex showed a diffuse synaptic pattern by immunohistochemistry, whereas it accumulated as fine and coarse granules and/or small plaques in the cerebellar cortex and brain stem. Severe spongiosis spread widely in the cerebral cortex, whereas florid plaques, a hallmark of variant Creutzfeldt-Jakob disease in humans, were observed in macaques inoculated with C-BSE but not in those inoculated with L-BSE.


To date, 27 cases of L-BSE and 24 cases of H-BSE have been report­ed worldwide (16), thus meaning that the prevalence of atypical BSE is considerably lower than that of C-BSE. However, recent studies showed that L-BSE is easily transmissible to transgenic mice expressing human (17,18) or bovine (19,20) prion protein, as well as to non-human primates (21), with shorter incubation periods than for the transmission of C-BSE to these animals. The virulent nature of L-BSE has stimulated new concern for human public health since the transmis­sion of C-BSE to humans resulted in variant Creutz­feldt-Jakob disease (vCJD) (4-7), a new emergent prion disease.


Two macaques simultaneously developed neurologi­cal signs and symptoms 19-20 months post-inoculation (mpi) with the brain homogenate of BSEI JP24. The monkeys entered the terminal stage of the disease (total paralysis) at 24-25 mpi, Both the onset and duration of the disease were shorter than those reported for the transmission of C-BSE to macaques by us and other groups (27,28). The clinical manifestations such as tremor, myoclonic jerking, and paralysis were similar to those observed during the transmission of C-BSE to ma- caques, whereas the premonitory abnormal behaviors, such as hyperekplexia and depression, seen upon trans­mission of C-BSE to macaques were not evident (27).

Histopathological analysis and IHC, performed as described previously (29), showed that severe spon­giform changes and the accumulation of Prpsc with various patterns were detectable in the brains of both monkeys (Fig. 1). Vacuolization was profound throughout the cerebral cortex, from the frontal to the occipital lobes (Fig. la). Likewise, synaptic-type Prpsc precipitation (30) was observed in the whole cerebral cortex and basal ganglia by IHC (Figs. Ib and c). Dense precipitates and plaques of Prpsc, which had been ob­served in cattle (JP24) brain (13), were not detected in the cerebrum of the monkeys. Prpsc, in the form of small plaques or coarse granules, was, however, detect­ed in the molecular layer of the cerebellum (Fig. Ie). Despite the severe spongiosis in the cerebral cortex, florid plaques, which are large Prpsc plaques surround­ed by vacuoles, a hallmark ofvCJD (4-7,30) and C-BSE transmission to macaques (27,28), were not observed. The histopathology of the brain was therefore similar to that reported for the brain of L-BSE (BASE)-transmit­ted macaques (21).


see full text ;

Monday, September 13, 2010

atypical BSE strains and sporadic CJD strains, is there a connection and why shouldn't there be $

Monday, September 13, 2010

atypical BSE strains and sporadic CJD strains, is there a connection and why shouldn't there be $ A Surprisingly High Number of the Plaque-Like VV sCJD Subtype Among the Polish sCJD-is There a Connection with BASE?


A Surprisingly High Number of the Plaque-Like VV sCJD Subtype Among the Polish sCJD—is There a Connection with BASE?

Beata Sikorska and Pawel P. Liberski Department of Molecular Pathology and Neuropathology; Medical University of Lodz; Lodz, Poland

Recently described bovine amyloidotic spongiform encephalopathy (BASE) or L type BSE—was is overrepresented in Poland (15% of all cases of BSE). Moreover, the number of BASE cases in Poland per million bovines is the highest in Europe. A potential human risk from BASE is evident from experimental transmission to “humanized” transgenic animals and primates. Taking into consideration that non-human primate inoculated with BASE had a shorter incubation period than monkeys infected with classical BSE, and that humanized Tg mice have been found to be highly susceptible to infection with atypical form of BSE, it seems probable that BASE may be more pathogenic for humans than BSE, but the transmitted disease may differ from BSE-derived vCJD. Among 47 cases which have been diagnosed as definite in our laboratory, in 19 cases complete histopathological examination and codon 129 status were available. On the basis of the histological pattern and codon 129 status the cases of sCJD were divided into subtypes according to the Parchi&Gambetti classification. The results are as follows: type 1 (MMorMV)- 42%, type 2 (VV)-32%, type 3 (MV)-10.5%, type 4c (MM)- 10.5% and type 5 (VV)-5 %. Although the number of cases is too low to conclude a significantly different distribution of sCJD subtypes in Polish population those data show surprisingly high number of the plaque-like VV sCJD subtype. Interestingly, it was shown before that Tg mice inoculated with BASE showed granular and plaque-like aggregates or PrPSc in brains resembling those observed in VV2 subtype of sCJD.


Transmission of Classical and Atypical (L-type) Bovine Spongiform Encephalopathy (BSE) Prions to Cynomolgus macaques

Fumiko Ono,1 Yoshio Yamakawa,2 Minoru Tobiume,3 Yuko Sato,3 Harutaka Katano,3 Kenichi Hagiwara,2 Iori Itagaki,1 Akio Hiyaoka,1 Katuhiko Komatuzaki,1 Yasunori Emoto,1 Hiroaki Shibata,4 Yuichi Murayama,5 Keiji Terao,4 Yasuhiro Yasutomi4 and Tetsutaro Sata3

1The Corporation for Production and Research of Laboratory Primates; Tsukuba City, Japan; 2Departments of Cell Biology and Biochemistry; and 3Pathology; National Institute of Infectious Diseases; Tokyo, Japan; 4Tsukuba Primate Research Center; National Institute of Biomedical Innovation; Tsukuba City, Japan; 5Prion Disease Research Team; National Institute of Animal Health; Tsukuba City, Japan

Key words: L-type BSE, cBSE, cynomolgus macaques, transmission

BSE prion derived from classical BSE (cBSE) or L-type BSE was characterized by inoculation into the brain of cynomolgus macaques. The neurologic manifestation was developed in all cynomolgus macaques at 27–43 months after intracerebral inoculation of brain homogenate from cBSE-affected cattle (BSE JP/6). Second transmission of cBSE from macaque to macaque shortened incubation period to 13–18 months. cBSE-affected macaques showed the similar clinical signs including hyperekplexia, tremor and paralysis in both primary and second transmission.

Two macaques were intracerebrally inoculated brain homogenate from the L-type BSE-affected cattle (BSE JP/24). The incubation periods were 19–20 months in primary transmission.

The clinical course of the L-type BSE-affected macaques differed from that in cBSE-affected macaques in the points of severe myoclonus without hyperekplexia. The glycoform profile of PrPSc detected in macaque CNS was consistent with original pattern of either cBSE or L-typeBSE PrPSc, respectively. Although severe spongiform change in the brain was remarkable in all BSE-affected macaques, severe spongiform spread widely in cerebral cortex in L-type BSE-affected macaques. Heavy accumulation of PrPSc surrounded by vacuola formed florid plaques in cerebral cortex of cBSE-affected macaques. Deposit of PrPSc in L-type BSE-affected macaque was weak and diffuse synaptic pattern in cerebrum, but large PrPSc plaques were evident at cerebellum. MRI analysis, T2, T1, DW and flair sequences, at the time of autopsy revealed that brain atrophy and dilatation of cerebral ventricles were significantly severe in L-type BSE-affected macaques. These results suggest that L-type BSE is more virulent strain to primates comparing to cBSE.


Evidence from Molecular Strain Typing

Gianluigi Zanusso Department of Neurological and Visual Sciences; Section of Clinical Neurology; University of Verona; Verona, Italy

Key words: molecular analysis, strain typing, atypical BSE, CJD

In 2001, active surveillance for bovine spongiform encephalopathy (BSE) led to the discovery of atypical BSE phenotypes in aged cattle distinct from classical BSE (C-type). These atypical BSE cases had been classified as low L-type (BASE) or high H-type BSE based on the molecular mass and the degree of glycosylation of of the pathological prion protein (PrPSc). Transmission studies in TgBov mice showed that H-type BSE, C-type BSE and BASE behave as distinct prion strains with different incubation periods, PrPSc molecular patterns and pathological phenotypes. A still unclear issue concerns the potential transmissibility and phenotypes of atypical BSEs in humans. We previously indicated that BASE was similar to a distinct subgroup of sporadic form of Creutzfeldt-Jakob disease (sCJD) MV2, based on molecular similarities and on neuropathological pattern of PrP deposition. To investigate a possible link between BASE and sCJD, Kong et al. and Comoy et al. experimentally inoculated TgHu mice (129MM) and a non-human primate respectively, showing in both models that BASE was more virulent compare to BSE. Further, non-human primate reproduced a clinical phenotype resembling to that of sCJD subtype MM2. Here, we presented a comparative analysis of the biochemical fingerprints of PrPSc between the different sCJD subtypes and animal TSEs and after experimental transmission to animals.

Opinion of the Scientific Steering Committee on the GEOGRAPHICAL RISK OF BOVINE SPONGIFORM ENCEPHALOPATHY (GBR) in POLAND Adopted on 30/03/2001

It is concluded that it is likely but not confirmed that one or several cattle that are (pre-clinically or clinically) infected with the BSE agent are currently present in the domestic herd of Poland (GBR III).

Atypical BSE (BASE) Transmitted from Asymptomatic Aging Cattle to a Primate

Emmanuel E. Comoy1*, Cristina Casalone2, Nathalie Lescoutra-Etchegaray1, Gianluigi Zanusso3, Sophie Freire1, Dominique Marcé1, Frédéric Auvré1, Marie-Magdeleine Ruchoux1, Sergio Ferrari3, Salvatore Monaco3, Nicole Salès4, Maria Caramelli2, Philippe Leboulch1,5, Paul Brown1, Corinne I. Lasmézas4, Jean-Philippe Deslys1

1 Institute of Emerging Diseases and Innovative Therapies, CEA, Fontenay-aux-Roses, France, 2 Istituto Zooprofilattico Sperimentale del Piemonte, Turin, Italy, 3 Policlinico G.B. Rossi, Verona, Italy, 4 Scripps Florida, Jupiter, Florida, United States of America, 5 Genetics Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America

Abstract Top Background Human variant Creutzfeldt-Jakob Disease (vCJD) results from foodborne transmission of prions from slaughtered cattle with classical Bovine Spongiform Encephalopathy (cBSE). Atypical forms of BSE, which remain mostly asymptomatic in aging cattle, were recently identified at slaughterhouses throughout Europe and North America, raising a question about human susceptibility to these new prion strains.

Methodology/Principal Findings Brain homogenates from cattle with classical BSE and atypical (BASE) infections were inoculated intracerebrally into cynomolgus monkeys (Macacca fascicularis), a non-human primate model previously demonstrated to be susceptible to the original strain of cBSE. The resulting diseases were compared in terms of clinical signs, histology and biochemistry of the abnormal prion protein (PrPres). The single monkey infected with BASE had a shorter survival, and a different clinical evolution, histopathology, and prion protein (PrPres) pattern than was observed for either classical BSE or vCJD-inoculated animals. Also, the biochemical signature of PrPres in the BASE-inoculated animal was found to have a higher proteinase K sensitivity of the octa-repeat region. We found the same biochemical signature in three of four human patients with sporadic CJD and an MM type 2 PrP genotype who lived in the same country as the infected bovine.

Conclusion/Significance Our results point to a possibly higher degree of pathogenicity of BASE than classical BSE in primates and also raise a question about a possible link to one uncommon subset of cases of apparently sporadic CJD. Thus, despite the waning epidemic of classical BSE, the occurrence of atypical strains should temper the urge to relax measures currently in place to protect public health from accidental contamination by BSE-contaminated products.

Citation: Comoy EE, Casalone C, Lescoutra-Etchegaray N, Zanusso G, Freire S, et al. (2008) Atypical BSE (BASE) Transmitted from Asymptomatic Aging Cattle to a Primate. PLoS ONE 3(8): e3017. doi:10.1371/journal.pone.0003017

Editor: Neil Mabbott, University of Edinburgh, United Kingdom

Received: April 24, 2008; Accepted: August 1, 2008; Published: August 20, 2008

Copyright: © 2008 Comoy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been supported by the Network of Excellence NeuroPrion.

Competing interests: CEA owns a patent covering the BSE diagnostic tests commercialized by the company Bio-Rad.

* E-mail: emmanuel.comoy@cea.fr

Session I - Prions: Structure, Strain and Detection (II)

Searching for BASE Strain Signature in Sporadic Creutzfedlt-Jakob Disease

Gianluigi Zanusso

Department of Neurological and Visual Sciences, Section of Clinical Neurology University of Verona, Verona, Italy.

Bovine amyloidotic spongiform encephalopathy (BASE) is a newly recognized form of bovine prion disease, which was originally detected in Italy in 2004 as an effect of active surveillance. BASE or BSE L-type (L is referred to the lower electrophoretic PrPSc migration than classical BSE) has now been reported in several countries, including Japan. All field cases of BASE were older than 8 years and neurologically normal at the time of slaughtered. By experimental transmission, we defined the disease phenotype of cattle BASE, which is quite distinct from that seen in typical BSE and characterized by mental dullness and amyotrophy. Surprisingly, following intraspecies and interspecies transmission the incubation period of BASE was shorter than BSE. The relatively easy transmission of BASE isolate as well as the molecular similarity with sporadic Creutzfeldt-Jakob disease (sCJD) have raised concern regarding its potential passage to humans. Tg humanized mice Met/Met at codon 129 challenged with both BSE and BASE isolates, showed a resistance to BSE but a susceptibility to BASE at a 60% rate; in addition, BASE-inoculated Cynomolgus (129 Met/Met) had shorter incubation periods than BSE-inoculated primates. In this study we compared the biochemical properties of PrPSc in Cynomolgus and in TgHu Met/Met mice challenged with BSE and BASE strains, by conventional SDS-PAGE analysis and 2D separation. The results obtained disclose distinct conformational changes in PrPSc, which are dependent on the inoculated host but not on the codon 129 genotype.

This work was supported by Neuroprion contract n. FOOD CT 2004 -506579 (NOE)



Molecular Features of the Protease-resistant Prion Protein (PrPres) in H-type BSE

Biacabe, A-G1; Jacobs, JG2; Gavier-Widén, D3; Vulin, J1; Langeveld, JPM2; Baron, TGM1 1AFSSA, France; 2CIDC-Lelystad, Netherlands; 3SVA, Sweden

Western blot analyses of PrPres accumulating in the brain of BSE-infected cattle have demonstrated 3 different molecular phenotypes regarding to the apparent molecular masses and glycoform ratios of PrPres bands. We initially described isolates (H-type BSE) essentially characterized by higher PrPres molecular mass and decreased levels of the diglycosylated PrPres band, in contrast to the classical type of BSE. This type is also distinct from another BSE phenotype named L-type BSE, or also BASE (for Bovine Amyloid Spongiform Encephalopathy), mainly characterized by a low representation of the diglycosylated PrPres band as well as a lower PrPres molecular mass. Retrospective molecular studies in France of all available BSE cases older than 8 years old and of part of the other cases identified since the beginning of the exhaustive surveillance of the disease in 20001 allowed to identify 7 H-type BSE cases, among 594 BSE cases that could be classified as classical, L- or H-type BSE. By Western blot analysis of H-type PrPres, we described a remarkable specific feature with antibodies raised against the C-terminal region of PrP that demonstrated the existence of a more C-terminal cleaved form of PrPres (named PrPres#2 ), in addition to the usual PrPres form (PrPres #1). In the unglycosylated form, PrPres #2 migrates at about 14 kDa, compared to 20 kDa for PrPres #1. The proportion of the PrPres#2 in cattle seems to by higher compared to the PrPres#1. Furthermore another PK-resistant fragment at about 7 kDa was detected by some more N-terminal antibodies and presumed to be the result of cleavages of both N- and C-terminal parts of PrP. These singular features were maintained after transmission of the disease to C57Bl/6 mice. The identification of these two additional PrPres fragments (PrPres #2 and 7kDa band) reminds features reported respectively in sporadic Creutzfeldt-Jakob disease and in Gerstmann-Sträussler-Scheinker (GSS) syndrome in humans.

Thursday, October 07, 2010

Experimental Transmission of H-type Bovine Spongiform Encephalopathy to Bovinized Transgenic Mice

Thursday, October 07, 2010 Experimental Transmission of H-type Bovine Spongiform Encephalopathy to Bovinized Transgenic Mice

Vet Pathol 0300985810382672, first published on October 4, 2010

Experimental Transmission of H-type Bovine Spongiform Encephalopathy to Bovinized Transgenic Mice

H. Okada okadahi@affrc.go.jp Prion Disease Research Center, National Institute of Animal Health, Tsukuba, K. Masujin Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Y. Imamaru Prion Disease Research Center, National Institute of Animal Health, Tsukuba, M. Imamura Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Y. Matsuura Prion Disease Research Center, National Institute of Animal Health, Tsukuba, S. Mohri Prion Disease Research Center, National Institute of Animal Health, Tsukuba, S. Czub Animal Disease Research Institute, Canadian Food Inspection Agency, T. Yokoyama Prion Disease Research Center, National Institute of Animal Health, Tsukuba,


To characterize the biological and biochemical properties of H-type bovine spongiform encephalopathy (BSE), a transmission study with a Canadian H-type isolate was performed with bovinized transgenic mice (TgBoPrP), which were inoculated intracerebrally with brain homogenate from cattle with H-type BSE. All mice exhibited characteristic neurologic signs, and the subsequent passage showed a shortened incubation period. The distribution of disease-associated prion protein (PrPSc) was determined by immunohistochemistry, Western blot, and paraffin-embedded tissue (PET) blot. Biochemical properties and higher molecular weight of the glycoform pattern were well conserved within mice. Immunolabeled granular PrPSc, aggregates, and/or plaque-like deposits were mainly detected in the following brain locations: septal nuclei, subcallosal regions, hypothalamus, paraventricular nucleus of the thalamus, interstitial nucleus of the stria terminalis, and the reticular formation of the midbrain. Weak reactivity was detected by immunohistochemistry and PET blot in the cerebral cortex, most thalamic nuclei, the hippocampus, medulla oblongata, and cerebellum. These findings indicate that the H-type BSE prion has biological and biochemical properties distinct from those of C-type and L-type BSE in TgBoPrP mice, which suggests that TgBoPrP mice constitute a useful animal model to distinguish isolates from BSE-infected cattle.

© 2010 Sage Publications, Inc.

Evaluation of the Human Transmission Risk of an Atypical Bovine Spongiform Encephalopathy Prion Strain▿ Qingzhong Kong1,*, Mengjie Zheng1, Cristina Casalone2, Liuting Qing1, Shenghai Huang1,†, Bikram Chakraborty1, Ping Wang1, Fusong Chen1, Ignazio Cali1, Cristiano Corona2, Francesca Martucci2, Barbara Iulini2, Pierluigi Acutis2, Lan Wang1, Jingjing Liang1, Meiling Wang1, Xinyi Li1, Salvatore Monaco3, Gianluigi Zanusso3, Wen-Quan Zou1, Maria Caramelli2 and Pierluigi Gambetti1,* + Author Affiliations

1Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106 2CEA, Istituto Zooprofilattico Sperimentale, 10154 Torino, Italy 3Department of Neurological and Visual Sciences, University of Verona, 37134 Verona, Italy ABSTRACT

Bovine spongiform encephalopathy (BSE), the prion disease in cattle, was widely believed to be caused by only one strain, BSE-C. BSE-C causes the fatal prion disease named new variant Creutzfeldt-Jacob disease in humans. Two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H, have been discovered in several countries since 2004; their transmissibility and phenotypes in humans are unknown. We investigated the infectivity and human phenotype of BASE strains by inoculating transgenic (Tg) mice expressing the human prion protein with brain homogenates from two BASE strain-infected cattle. Sixty percent of the inoculated Tg mice became infected after 20 to 22 months of incubation, a transmission rate higher than those reported for BSE-C. A quarter of BASE strain-infected Tg mice, but none of the Tg mice infected with prions causing a sporadic human prion disease, showed the presence of pathogenic prion protein isoforms in the spleen, indicating that the BASE prion is intrinsically lymphotropic. The pathological prion protein isoforms in BASE strain-infected humanized Tg mouse brains are different from those from the original cattle BASE or sporadic human prion disease. Minimal brain spongiosis and long incubation times are observed for the BASE strain-infected Tg mice. These results suggest that in humans, the BASE strain is a more virulent BSE strain and likely lymphotropic.


DISCUSSION We have shown that 60% of our Tg40 mice (in an inbred FVB background) that express normal levels of human PrP-129M became infected 20 to 22 months after i.c. inoculation with 0.3 mg of brain tissue from the two BASE isolates, suggesting a titer of approximately 3 50% infective dose units per milligram of brain tissue in the Tg40 line. An approximately 20% attack rate has been reported for the Tg650 line (in a mixed 129/Sv × C57BL/6 background) after i.c. inoculation with 2 mg brain tissues from BSE-C-infected cattle (2). It is noteworthy that the Tg650 mice express human PrP-129M at five to eight times the normal level, and high PrP levels are known to increase prion transmissibility (9, 17, 22). Inefficient BSE-C transmissions (0 to 30%) in Tg mouse lines of other genetic backgrounds expressing human PrP-129M at one or two times the normal level have also been reported by different groups (1, 4). Although it is difficult to compare results from different mouse lines, these findings suggest that the BASE strain has higher transmissibility than BSE-C does for humanized Tg mice with PrP-129M and possibly for humans with PrP-129MM. The BASE strain also appears to be more virulent than BSE-C in bovinized Tg mice, since the incubation time for the BASE strain is 185 ± 12 days, whereas that for BSE-C is 230 ± 7 days (7). Nevertheless, compared with the 100% attack rate and incubation times of ∼9 months for sCJDMM1 and sCJDMM2 in the Tg40 line (Table 1), the 60% attack rate and unusually long incubation times (20 to 22 months) for the BASE strain in the same Tg line suggest that the transmission barrier from the BASE strain to humans with PrP-129MM is still quite significant.

PK-resistant PrPSc was also detected in the spleen in 4 out of 18 BASE strain-infected Tg40 mice. In contrast, no spleen involvement could be demonstrated for the Tg40 mice following i.c. inoculation with human PrPSc from sCJDMM1. This is the first report of the presence of PrPSc in the spleens of humanized Tg mice after i.c. inoculation with a BSE strain, suggesting that the BASE strain, like BSE-C, where at least in vCJD-infected subjects PrPSc and prion infectivity have been detected in spleens and tonsils (6, 11), is intrinsically lymphotropic. Therefore, lymphoid tissues of BASE strain-infected individuals might also carry prion infectivity.

The gel mobility of the PK-resistant PrPSc recovered from the BASE strain-inoculated Tg40 mice was consistently slightly faster than the mobility of BSE-C, as originally reported for the BASE strain (8). The computed difference in gel mobilities between BASE and BSE-C PrPSc is 0.29 ± 0.12 kDa, corresponding to 2 to 4 amino acid residues. In contrast, the gel mobilities of the PK-resistant PrPSc species from the BASE strain, BASE strain-infected Tg40 mice, and sCJDMM2, which was used as representative of human PrPSc of type 2, were indistinguishable. This finding suggests that the PK-resistant PrPSc electrophoretic heterogeneity between the BASE strain and BSE-C falls well within the 7-amino-acid variability of the N terminus (positions 92 to 99) that is consistently found in PK-resistant PrPSc of type 2 (16). Therefore, despite their minor but distinct variability in gel mobility, both the BASE strain and BSE-C PrPSc species appear to belong to the PrPSc of type 2. However, the PrPSc glycoform ratios of BASE strain-infected Tg40 mice and the BASE strain inocula display a small but statistically significant difference (Fig. 1). Therefore, PrPSc in BASE strain-infected human subjects may be expected to display a different glycoform ratio from that of the BASE strain. It is worth noting that the electrophoretic characteristics of the PK-resistant PrPSc of some human prion strains has been faithfully reproduced by our Tg40 line as well as by other humanized mouse lines (10, 13, 21).

Two distinct histopathological and PrP immunohistochemical phenotypes have been reported following BSE-C inoculation: one reproduced the distinctive features of vCJD with the “florid” plaques that intensely immunostained for PrP, and the other was reminiscent of sCJDMM1, with prominent spongiform degeneration and no plaque PrP immunostaining (1, 23). The brain histopathology, the PrPSc distribution, and the PrP immunostaining pattern of BASE strain-inoculated Tg40 mice were definitely distinct from such features described above (1, 23), further supporting the notion that BASE and classical BSE are associated with two distinct prion strains (8).

The relatively easy transmission of BASE to humanized Tg mice indicates that effective cattle prion surveillance should be maintained until the extent and origin of this and other atypical forms of BSE are fully understood.

Previous Section Next Section ACKNOWLEDGMENTS

Tuesday, December 14, 2010

Infection control of CJD, vCJD and other human prion diseases in healthcare and community settings part 4, Annex A1, Annex J, UPDATE DECEMBER 2010

Saturday, June 13, 2009

Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States 2003 revisited 2009

Saturday, January 2, 2010

Human Prion Diseases in the United States January 1, 2010 ***FINAL***

14th ICID International Scientific Exchange Brochure -

Final Abstract Number: ISE.114

Session: International Scientific Exchange

Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America

update October 2009

T. Singeltary

Bacliff, TX, USA


An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.


12 years independent research of available data


I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.


I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.

Tuesday, December 14, 2010

Infection control of CJD, vCJD and other human prion diseases in healthcare and community settings part 4, Annex A1, Annex J, UPDATE DECEMBER 2010

Diagnosis and Reporting of Creutzfeldt-Jakob Disease 

Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA Diagnosis and Reporting of Creutzfeldt-Jakob Disease 

To the Editor: 

In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally. 

Terry S. Singeltary, Sr Bacliff, Tex 

1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323. 

Heidenhain Variant Creutzfeldt Jakob Disease autopsy case report 'MOM'

DIVISION OF NEUROPATHOLOGY University of Texas Medical Branch 114 McCullough Bldg. Galveston, Texas 77555-0785


DATE: 4-23-98

TO: Mr. Terry Singeltary @ -------

FROM: Gerald Campbell

FAX: (409) 772-5315 PHONE: (409) 772-2881

Number of Pages (including cover sheet):



This document accompanying this transmission contains confidential information belonging to the sender that is legally privileged. This information is intended only for the use of the individual or entry names above. If you are not the intended recipient, you are hereby notified that any disclosure, copying distribution, or the taking of any action in reliances on the contents of this telefaxed information is strictly prohibited. If you received this telefax in error, please notify us by telephone immediately to arrange for return of the original documents. -------------------------- Patient Account: 90000014-518 Med. Rec. No.: (0160)118511Q Patient Name: POULTER, BARBARA Age: 63 YRS DOB: 10/17/34 Sex: F Admitting Race: C

Attending Dr.: Date / Time Admitted : 12/14/97 1228 Copies to:

UTMB University of Texas Medical Branch Galveston, Texas 77555-0543 (409) 772-1238 Fax (409) 772-5683 Pathology Report

FINAL AUTOPSY DIAGNOSIS Autopsy' Office (409)772-2858

Autopsy NO.: AU-97-00435

AUTOPSY INFORMATION: Occupation: Unknown Birthplace: Unknown Residence: Crystal Beach Date/Time of Death: 12/14/97 13:30 Date/Time of Autopsy: 12/15/97 15:00 Pathologist/Resident: Pencil/Fernandez Service: Private Restriction: Brain only


I. Brain: Creutzfeldt-Jakob disease, Heidenhain variant.

snip...see full text ;

Terry S. Singeltary Sr.
Bacliff, Texas 77518


Links to this post:

Create a Link

<< Home