Thursday, July 30, 2015
CJD toll among farmers `too high for mere chance'
August 15, 1997
PA News
John von Radowitz and Andrew Woodcock Microbiologist Richard Lacey, billed
in this story as the first to suggest a link between CJD and BSE seven years
ago, was cited in this story as saying that the number of cattle farmers falling
victim to Creutzfeld-Jakob Disease is much too high to be mere chance, adding
that, "Where the CJD Surveillance Unit come unstuck is in trying to explain what
happened to these six farmers. This is just too many to have occurred by chance.
Unfortunately they don't want to consider the possibility that these farmers in
this country and other countries were infected by cattle before BSE developed."
The story notes that professor Lacey believes sporadic CJD itself originates
from a cattle infection - possibly a precursor to BSE that has not yet been
detected, adding that,
"For years I have suggested that the cause is a rare disease in cattle
world wide. Both BSE and the new variant CJD are a new and different disease.
What has probably happened is that BSE is a variant of the old type of disease,
which could have been missed because it's symptom free. It would explain why
such an unusually high number of dairy farmers are being affected by CJD both
here and abroad." He also said that cases of sporadic CJD had been recorded as
far back as the 1920s. Professor Lacey went on to add that he thought the new
variant pattern was alarming, adding, "It's rising, and that is a concern.
Unfortunately we can't predict the scale of the problem. If the disease doubled
each year up to the year 2020 you'd have hundreds of thousands of cases."
.195 Among occupational groups exposed to BSE, farmers remain unusual in
having such an excess over the incidence of CJD for the population as a whole.
No cases of CJD have been reported amount veterinarians exposed to BSE. Four
people in the meat industry (butchers, abattoirs, rendering plants, etc) have
been reported to have vCJD.386 The present evidence has been accepted by some as
reassuring in that such occupations may not pose as serious a risk as might have
been expected.
This was not simply another farmer but the third farmer...
suspect case of CJD in a farmer who has had a case of BSE in his beef
suckler herd.
http://web.archive.org/web/20030331213802/http://www.bseinquiry.gov.uk/files/yb/1995/10/23006001.pdf
cover-up of 4th farm worker ???
http://web.archive.org/web/20030516083454/http://www.bseinquiry.gov.uk/files/yb/1995/10/23006001.pdf
http://web.archive.org/web/20030330175323/http://www.bseinquiry.gov.uk/files/yb/1995/10/20006001.pdf
CONFIRMATION OF CJD IN FOURTH FARMER
now story changes from; SEAC concluded that, if the fourth case were
confirmed, it would be worrying, especially as all four farmers with CJD would
have had BSE cases on their farms.
to;
This is not unexpected... was another farmer expected?
http://web.archive.org/web/20030728074919/http://www.bseinquiry.gov.uk/files/yb/1995/11/13010001.pdf
4th farmer, and 1st teenager
snip...
2. Over a 5 year period, which is the time period on which the advice from
Professor Smith and Dr. Gore was based, and assuming a population of 120,000
dairy farm workers, and an annual incidence of 1 per million cases of CJD in the
general population, a DAIRY FARM WORKER IS 5 TIMES MORE LIKELY THAN an
individual in the general population to develop CJD. Using the actual current
annual incidence of CJD in the UK of 0.7 per million, this figure becomes 7.5
TIMES.
3. You will recall that the advice provided by Professor Smith in 1993 and
by Dr. Gore this month used the sub-population of dairy farm workers who had had
a case of BSE on their farms - 63,000, which is approximately half the number of
dairy farm workers - as a denominator. If the above sums are repeated using this
denominator population, taking an annual incidence in the general population of
1 per million the observed rate in this sub-population is 10 TIMES, and taking
an annual incidence of 0.7 per million, IT IS 15 TIMES (THE ''WORST CASE''
SCENARIO) than that in the general population...
http://web.archive.org/web/20030516181226/http://www.bseinquiry.gov.uk/files/yb/1995/01/31004001.pdf
CJD FARMERS WIFE 1989
20 year old died from sCJD in USA in 1980 and a 16 year old in 1981. A 19
year old died from sCJD in France in 1985. There is no evidence of an iatrogenic
cause for those cases....
http://web.archive.org/web/20030330212925/http://www.bseinquiry.gov.uk/files/yb/1995/10/04004001.pdf
Monday, May 19, 2008
SPORADIC CJD IN FARMERS, FARMERS WIVES, FROM FARMS WITH BSE HERD AND
ABATTOIRS
Monday, June 29, 2015
*** RESTRICTED – POLICY CJD IN ADOLESCENTS (16 year old Vickey Rimmer),
FARMERS WITH BSE HERDS, AND FARMERS WIFE with Sporadic CJD
PRION 2015 ORAL AND POSTER CONGRESSIONAL ABSTRACTS
THANK YOU PRION 2015 TAYLOR & FRANCIS, Professor Chernoff, and
Professor Aguzzi et al, for making these PRION 2015 Congressional Poster and
Oral Abstracts available freely to the public. ...Terry S. Singeltary Sr.
O.05: Transmission of prions to primates after extended silent incubation
periods: Implications for BSE and scrapie risk assessment in human populations
Emmanuel Comoy, Jacqueline Mikol, Val erie Durand, Sophie Luccantoni,
Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys
Atomic Energy Commission; Fontenay-aux-Roses, France
Prion diseases (PD) are the unique neurodegenerative proteinopathies
reputed to be transmissible under field conditions since decades. The
transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that
an animal PD might be zoonotic under appropriate conditions. Contrarily, in the
absence of obvious (epidemiological or experimental) elements supporting a
transmission or genetic predispositions, PD, like the other proteinopathies, are
reputed to occur spontaneously (atpical animal prion strains, sporadic CJD
summing 80% of human prion cases). Non-human primate models provided the first
evidences supporting the transmissibiity of human prion strains and the zoonotic
potential of BSE. Among them, cynomolgus macaques brought major information for
BSE risk assessment for human health (Chen, 2014), according to their
phylogenetic proximity to humans and extended lifetime. We used this model to
assess the zoonotic potential of other animal PD from bovine, ovine and cervid
origins even after very long silent incubation periods. We recently observed the
direct transmission of a natural classical scrapie isolate to macaque after a
10-year silent incubation period, with features similar to some reported for
human cases of sporadic CJD, albeit requiring fourfold longe incubation than
BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), is the third
potentially zoonotic PD (with BSE and L-type BSE), ***thus questioning the
origin of human sporadic cases. We will present an updated panorama of our
different transmission studies and discuss the implications of such extended
incubation periods on risk assessment of animal PD for human health.
===============
***thus questioning the origin of human sporadic cases...TSS
===============
Saturday, May 30, 2015
PRION 2015 ORAL AND POSTER CONGRESSIONAL ABSTRACTS
PRION 2015 CONFERENCE FT. COLLINS CWD RISK FACTORS TO HUMANS
*** LATE-BREAKING ABSTRACTS PRION 2015 CONFERENCE ***
O18
Zoonotic Potential of CWD Prions
Liuting Qing1, Ignazio Cali1,2, Jue Yuan1, Shenghai Huang3, Diane Kofskey1,
Pierluigi Gambetti1, Wenquan Zou1, Qingzhong Kong1 1Case Western Reserve
University, Cleveland, Ohio, USA, 2Second University of Naples, Naples, Italy,
3Encore Health Resources, Houston, Texas, USA
Chronic wasting disease (CWD) is a widespread and expanding prion disease
in free-ranging and captive cervid species in North America. The zoonotic
potential of CWD prions is a serious public health concern. Current literature
generated with in vitro methods and in vivo animal models (transgenic mice,
macaques and squirrel monkeys) reports conflicting results. The susceptibility
of human CNS and peripheral organs to CWD prions remains largely unresolved. In
our earlier bioassay experiments using several humanized transgenic mouse lines,
we detected protease-resistant PrPSc in the spleen of two out of 140 mice that
were intracerebrally inoculated with natural CWD isolates, but PrPSc was not
detected in the brain of the same mice. Secondary passages with such
PrPSc-positive CWD-inoculated humanized mouse spleen tissues led to efficient
prion transmission with clear clinical and pathological signs in both humanized
and cervidized transgenic mice. Furthermore, a recent bioassay with natural CWD
isolates in a new humanized transgenic mouse line led to clinical prion
infection in 2 out of 20 mice. These results indicate that the CWD prion has the
potential to infect human CNS and peripheral lymphoid tissues and that there
might be asymptomatic human carriers of CWD infection.
==================
***These results indicate that the CWD prion has the potential to infect
human CNS and peripheral lymphoid tissues and that there might be asymptomatic
human carriers of CWD infection.***
==================
P.105: RT-QuIC models trans-species prion transmission
Kristen Davenport, Davin Henderson, Candace Mathiason, and Edward Hoover
Prion Research Center; Colorado State University; Fort Collins, CO USA
The propensity for trans-species prion transmission is related to the
structural characteristics of the enciphering and heterologous PrP, but the
exact mechanism remains mostly mysterious. Studies of the effects of primary or
tertiary prion protein structures on trans-species prion transmission have
relied primarily upon animal bioassays, making the influence of prion protein
structure vs. host co-factors (e.g. cellular constituents, trafficking, and
innate immune interactions) difficult to dissect. As an alternative strategy, we
used real-time quakinginduced conversion (RT-QuIC) to investigate trans-species
prion conversion.
To assess trans-species conversion in the RT-QuIC system, we compared
chronic wasting disease (CWD) and bovine spongiform encephalopathy (BSE) prions,
as well as feline CWD (fCWD) and feline spongiform encephalopathy (FSE). Each
prion was seeded into each host recombinant PrP (full-length rPrP of
white-tailed deer, bovine or feline). We demonstrated that fCWD is a more
efficient seed for feline rPrP than for white-tailed deer rPrP, which suggests
adaptation to the new host.
Conversely, FSE maintained sufficient BSE characteristics to more
efficiently convert bovine rPrP than feline rPrP. Additionally, human rPrP was
competent for conversion by CWD and fCWD. ***This insinuates that, at the level
of protein:protein interactions, the barrier preventing transmission of CWD to
humans is less robust than previously estimated.
================
***This insinuates that, at the level of protein:protein interactions, the
barrier preventing transmission of CWD to humans is less robust than previously
estimated.***
================
Thursday, August 12, 2010
Seven main threats for the future linked to prions
***Also, a link is suspected between atypical BSE and some apparently
sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases
constitute an unforeseen first threat that could sharply modify the European
approach to prion diseases.
Second threat
snip...
Monday, October 10, 2011
EFSA Journal 2011 The European Response to BSE: A Success Story
snip...
*** but the possibility that a small proportion of human cases so far
classified as "sporadic" CJD are of zoonotic origin could not be excluded.
Moreover, transmission experiments to non-human primates suggest that some TSE
agents in addition to Classical BSE prions in cattle (namely L-type Atypical
BSE, Classical BSE in sheep, transmissible mink encephalopathy (TME) and chronic
wasting disease (CWD) agents) might have zoonotic potential.
snip...
***In addition, non-human primates are specifically susceptible for
atypical BSE as demonstrated by an approximately 50% shortened incubation time
for L-type BSE as compared to C-type. Considering the current scientific
information available, it cannot be assumed that these different BSE types pose
the same human health risks as C-type BSE or that these risks are mitigated by
the same protective measures.
From: Terry S. Singeltary Sr.
Sent: Saturday, November 15, 2014 9:29 PM
To: Terry S. Singeltary Sr.
Subject: THE EPIDEMIOLOGY OF CREUTZFELDT-JAKOB DISEASE R. G. WILL
1984
THE EPIDEMIOLOGY OF CREUTZFELDT-JAKOB DISEASE
R. G. WILL
1984
*** The association between venison eating and risk of CJD shows similar
pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK
OF CJD (p = 0.04). (SEE LINK IN REPORT HERE...TSS) PLUS, THE CDC DID NOT PUT
THIS WARNING OUT FOR THE WELL BEING OF THE DEER AND ELK ;
snip...
Evidence That Transmissible Mink Encephalopathy Results from Feeding
Infected Cattle
Over the next 8-10 weeks, approximately 40% of all the adult mink on the
farm died from TME.
snip...
The rancher was a ''dead stock'' feeder using mostly (>95%) downer or
dead dairy cattle...
In Confidence - Perceptions of unconventional slow virus diseases of
animals in the USA - APRIL-MAY 1989 - G A H Wells
3. Prof. A. Robertson gave a brief account of BSE. The US approach was to
accord it a very low profile indeed. Dr. A Thiermann showed the picture in the
''Independent'' with cattle being incinerated and thought this was a fanatical
incident to be avoided in the US at all costs. ...
human cwd will NOT look like nvCJD. in fact, see ;
*** These results would seem to suggest that CWD does indeed have zoonotic
potential, at least as judged by the compatibility of CWD prions and their human
PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests
that if zoonotic CWD occurred, it would most likely effect those of the PRNP
codon 129-MM genotype and that the PrPres type would be similar to that found in
the most common subtype of sCJD (MM1).***
I strenuously once again urge the FDA and its industry constituents, to
make it MANDATORY that all ruminant feed be banned to all ruminants, and this
should include all cervids as soon as possible for the following
reasons...
======
In the USA, under the Food and Drug Administrations BSE Feed Regulation (21
CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from
deer and elk is prohibited for use in feed for ruminant animals. With regards to
feed for non-ruminant animals, under FDA law, CWD positive deer may not be used
for any animal feed or feed ingredients. For elk and deer considered at high
risk for CWD, the FDA recommends that these animals do not enter the animal feed
system.
***However, this recommendation is guidance and not a requirement by law.
======
31 Jan 2015 at 20:14 GMT
*** Ruminant feed ban for cervids in the United States? ***
Singeltary et al
31 Jan 2015 at 20:14 GMT
*** We describe the transmission of spongiform encephalopathy in a
non-human primate inoculated 10 years earlier with a strain of sheep c-scrapie.
Because of this extended incubation period in a facility in which other prion
diseases are under study, we are obliged to consider two alternative
possibilities that might explain its occurrence. We first considered the
possibility of a sporadic origin (like CJD in humans). Such an event is
extremely improbable because the inoculated animal was 14 years old when the
clinical signs appeared, i.e. about 40% through the expected natural lifetime of
this species, compared to a peak age incidence of 60–65 years in human sporadic
CJD, or about 80% through their expected lifetimes.
***Moreover, sporadic disease has never been observed in breeding colonies
or primate research laboratories, most notably among hundreds of animals over
several decades of study at the National Institutes of Health25, and in nearly
twenty older animals continuously housed in our own facility.***
>>> Moreover, sporadic disease has never been observed in breeding
colonies or primate research laboratories, most notably among hundreds of
animals over several decades of study at the National Institutes of Health25,
and in nearly twenty older animals continuously housed in our own facility.
<<<
Transmission of scrapie prions to primate after an extended silent
incubation period
Emmanuel E. Comoy1 , Jacqueline Mikol1 , Sophie Luccantoni-Freire1 ,
Evelyne Correia1 , Nathalie Lescoutra-Etchegaray1 , Valérie Durand1 , Capucine
Dehen1 , Olivier Andreoletti2 , Cristina Casalone3 , Juergen A. Richt4 n1 ,
Justin J. Greenlee4 , Thierry Baron5 , Sylvie L. Benestad6 , Paul Brown1 […]
& Jean-Philippe Deslys1 - Show fewer authors Scientific Reports 5, Article
number: 11573 (2015) doi:10.1038/srep11573 Download Citation
Epidemiology | Neurological manifestations | Prion diseases Received: 16
February 2015 Accepted: 28 May 2015 Published online: 30 June 2015 ABSTRACT
Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion
disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD)
in humans and having guided protective measures for animal and human health
against animal prion diseases. Recently, partial transmissions to humanized mice
showed that the zoonotic potential of scrapie might be similar to c-BSE. We here
report the direct transmission of a natural classical scrapie isolate to
cynomolgus macaque, a highly relevant model for human prion diseases, after a
10-year silent incubation period, with features similar to those reported for
human cases of sporadic CJD. Scrapie is thus actually transmissible to primates
with incubation periods compatible with their life expectancy, although fourfold
longer than BSE. Long-term experimental transmission studies are necessary to
better assess the zoonotic potential of other prion diseases with high
prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98
scrapie.
snip...
Discussion
We describe the transmission of spongiform encephalopathy in a non-human
primate inoculated 10 years earlier with a strain of sheep c-scrapie. Because of
this extended incubation period in a facility in which other prion diseases are
under study, we are obliged to consider two alternative possibilities that might
explain its occurrence. We first considered the possibility of a sporadic origin
(like CJD in humans). Such an event is extremely improbable because the
inoculated animal was 14 years old when the clinical signs appeared, i.e. about
40% through the expected natural lifetime of this species, compared to a peak
age incidence of 60–65 years in human sporadic CJD, or about 80% through their
expected lifetimes. Moreover, sporadic disease has never been observed in
breeding colonies or primate research laboratories, most notably among hundreds
of animals over several decades of study at the National Institutes of Health25,
and in nearly twenty older animals continuously housed in our own
facility.
The second possibility is a laboratory cross-contamination. Three facts
make this possibility equally unlikely. First, handling of specimens in our
laboratory is performed with fastidious attention to the avoidance of any such
cross-contamination. Second, no laboratory cross-contamination has ever been
documented in other primate laboratories, including the NIH, even between
infected and uninfected animals housed in the same or adjacent cages with daily
intimate contact (P. Brown, personal communication). Third, the cerebral lesion
profile is different from all the other prion diseases we have studied in this
model19, with a correlation between cerebellar lesions (massive spongiform
change of Purkinje cells, intense PrPres staining and reactive gliosis26) and
ataxia. The iron deposits present in the globus pallidus are a non specific
finding that have been reported previously in neurodegenerative diseases and
aging27. Conversely, the thalamic lesion was reminiscent of a metabolic disease
due to thiamine deficiency28 but blood thiamine levels were within normal limits
(data not shown). The preferential distribution of spongiform change in cortex
associated with a limited distribution in the brainstem is reminiscent of the
lesion profile in MM2c and VV1 sCJD patients29, but interspecies comparison of
lesion profiles should be interpreted with caution. It is of note that the same
classical scrapie isolate induced TSE in C57Bl/6 mice with similar incubation
periods and lesional profiles as a sample derived from a MM1 sCJD
patient30.
We are therefore confident that the illness in this cynomolgus macaque
represents a true transmission of a sheep c-scrapie isolate directly to an
old-world monkey, which taxonomically resides in the primate subdivision
(parvorder of catarrhini) that includes humans. With an homology of its PrP
protein with humans of 96.4%31, cynomolgus macaque constitutes a highly relevant
model for assessing zoonotic risk of prion diseases. Since our initial aim was
to show the absence of transmission of scrapie to macaques in the worst-case
scenario, we obtained materials from a flock of naturally-infected sheep,
affecting animals with different genotypes32. This c-scrapie isolate exhibited
complete transmission in ARQ/ARQ sheep (332 ± 56 days) and Tg338 transgenic mice
expressing ovine VRQ/VRQ prion protein (220 ± 5 days) (O. Andreoletti, personal
communication). From the standpoint of zoonotic risk, it is important to note
that sheep with c-scrapie (including the isolate used in our study) have
demonstrable infectivity throughout their lymphoreticular system early in the
incubation period of the disease (3 months-old for all the lymphoid organs, and
as early as 2 months-old in gut-associated lymph nodes)33. In addition, scrapie
infectivity has been identified in blood34, milk35 and skeletal muscle36 from
asymptomatic but scrapie infected small ruminants which implies a potential
dietary exposure for consumers.
Two earlier studies have reported the occurrence of clinical TSE in
cynomolgus macaques after exposures to scrapie isolates. In the first study, the
“Compton” scrapie isolate (derived from an English sheep) and serially
propagated for 9 passages in goats did not transmit TSE in cynomolgus macaque,
rhesus macaque or chimpanzee within 7 years following intracerebral challenge1;
conversely, after 8 supplementary passages in conventional mice, this “Compton”
isolate induced TSE in a cynomolgus macaque 5 years after intracerebral
challenge, but rhesus macaques and chimpanzee remained asymptomatic 8.5 years
post-exposure8. However, multiple successive passages that are classically used
to select laboratory-adapted prion strains can significantly modify the initial
properties of a scrapie isolate, thus questioning the relevance of zoonotic
potential for the initial sheep-derived isolate. The same isolate had also
induced disease into squirrel monkeys (new-world monkey)9. A second historical
observation reported that a cynomolgus macaque developed TSE 6 years
post-inoculation with brain homogenate from a scrapie-infected Suffolk ewe
(derived from USA), whereas a rhesus macaque and a chimpanzee exposed to the
same inoculum remained healthy 9 years post-exposure1. This inoculum also
induced TSE in squirrel monkeys after 4 passages in mice. Other scrapie
transmission attempts in macaque failed but had more shorter periods of
observation in comparison to the current study. Further, it is possible that
there are differences in the zoonotic potential of different scrapie
strains.
The most striking observation in our study is the extended incubation
period of scrapie in the macaque model, which has several implications. Firstly,
our observations constitute experimental evidence in favor of the zoonotic
potential of c-scrapie, at least for this isolate that has been extensively
studied32,33,34,35,36. The cross-species zoonotic ability of this isolate should
be confirmed by performing duplicate intracerebral exposures and assessing the
transmissibility by the oral route (a successful transmission of prion strains
through the intracerebral route may not necessarily indicate the potential for
oral transmission37). However, such confirmatory experiments may require more
than one decade, which is hardly compatible with current general management and
support of scientific projects; thus this study should be rather considered as a
case report.
Secondly, transmission of c-BSE to primates occurred within 8 years post
exposure for the lowest doses able to transmit the disease (the survival period
after inoculation is inversely proportional to the initial amount of infectious
inoculum). The occurrence of scrapie 10 years after exposure to a high dose (25
mg) of scrapie-infected sheep brain suggests that the macaque has a higher
species barrier for sheep c-scrapie than c-BSE, although it is notable that
previous studies based on in vitro conversion of PrP suggested that BSE and
scrapie prions would have a similar conversion potential for human PrP38.
Thirdly, prion diseases typically have longer incubation periods after oral
exposure than after intracerebral inoculations: since humans can develop Kuru 47
years after oral exposure39, an incubation time of several decades after oral
exposure to scrapie would therefore be expected, leading the disease to occur in
older adults, i.e. the peak age for cases considered to be sporadic disease, and
making a distinction between scrapie-associated and truly sporadic disease
extremely difficult to appreciate.
Fourthly, epidemiologic evidence is necessary to confirm the zoonotic
potential of an animal disease suggested by experimental studies. A relatively
short incubation period and a peculiar epidemiological situation (e.g., all the
first vCJD cases occurring in the country with the most important ongoing c-BSE
epizootic) led to a high degree of suspicion that c-BSE was the cause of vCJD.
Sporadic CJD are considered spontaneous diseases with an almost stable and
constant worldwide prevalence (0.5–2 cases per million inhabitants per year),
and previous epidemiological studies were unable to draw a link between sCJD and
classical scrapie6,7,40,41, even though external causes were hypothesized to
explain the occurrence of some sCJD clusters42,43,44. However, extended
incubation periods exceeding several decades would impair the predictive values
of epidemiological surveillance for prion diseases, already weakened by a
limited prevalence of prion diseases and the multiplicity of isolates gathered
under the phenotypes of “scrapie” and “sporadic CJD”.
Fifthly, considering this 10 year-long incubation period, together with
both laboratory and epidemiological evidence of decade or longer intervals
between infection and clinical onset of disease, no premature conclusions should
be drawn from negative transmission studies in cynomolgus macaques with less
than a decade of observation, as in the aforementioned historical transmission
studies of scrapie to primates1,8,9. Our observations and those of others45,46
to date are unable to provide definitive evidence regarding the zoonotic
potential of CWD, atypical/Nor98 scrapie or H-type BSE. The extended incubation
period of the scrapie-affected macaque in the current study also underscores the
limitations of rodent models expressing human PrP for assessing the zoonotic
potential of some prion diseases since their lifespan remains limited to
approximately two years21,47,48. This point is illustrated by the fact that the
recently reported transmission of scrapie to humanized mice was not associated
with clinical signs for up to 750 days and occurred in an extreme minority of
mice with only a marginal increase in attack rate upon second passage13. The low
attack rate in these studies is certainly linked to the limited lifespan of mice
compared to the very long periods of observation necessary to demonstrate the
development of scrapie. Alternatively, one could estimate that a successful
second passage is the result of strain adaptation to the species barrier, thus
poorly relevant of the real zoonotic potential of the original scrapie isolate
of sheep origin49. The development of scrapie in this primate after an
incubation period compatible with its lifespan complements the study conducted
in transgenic (humanized) mice; taken together these studies suggest that some
isolates of sheep scrapie can promote misfolding of the human prion protein and
that scrapie can develop within the lifespan of some primate species.
In addition to previous studies on scrapie transmission to primate1,8,9 and
the recently published study on transgenic humanized mice13, our results
constitute new evidence for recommending that the potential risk of scrapie for
human health should not be dismissed. Indeed, human PrP transgenic mice and
primates are the most relevant models for investigating the human transmission
barrier. To what extent such models are informative for measuring the zoonotic
potential of an animal TSE under field exposure conditions is unknown. During
the past decades, many protective measures have been successfully implemented to
protect cattle from the spread of c-BSE, and some of these measures have been
extended to sheep and goats to protect from scrapie according to the principle
of precaution. Since cases of c-BSE have greatly reduced in number, those
protective measures are currently being challenged and relaxed in the absence of
other known zoonotic animal prion disease. We recommend that risk managers
should be aware of the long term potential risk to human health of at least
certain scrapie isolates, notably for lymphotropic strains like the classical
scrapie strain used in the current study. Relatively high amounts of infectivity
in peripheral lymphoid organs in animals infected with these strains could lead
to contamination of food products produced for human consumption. Efforts should
also be maintained to further assess the zoonotic potential of other animal
prion strains in long-term studies, notably lymphotropic strains with high
prevalence like CWD, which is spreading across North America, and atypical/Nor98
scrapie (Nor98)50 that was first detected in the past two decades and now
represents approximately half of all reported cases of prion diseases in small
ruminants worldwide, including territories previously considered as scrapie
free. Even if the prevailing view is that sporadic CJD is due to the spontaneous
formation of CJD prions, it remains possible that its apparent sporadic nature
may, at least in part, result from our limited capacity to identify an
environmental origin.
spontaneous atypical BSE ???
if that's the case, then France is having one hell of an epidemic of
atypical BSE, probably why they stopped testing for BSE, problem solved $$$
As of December 2011, around 60 atypical BSE cases have currently been
reported in 13 countries, *** with over one third in France.
so 20 cases of atypical BSE in France, compared to the remaining 40 cases
in the remaining 12 Countries, divided by the remaining 12 Countries, about 3+
cases per country, besides Frances 20 cases. you cannot explain this away with
any spontaneous BSe. ...TSS
Sunday, October 5, 2014
France stops BSE testing for Mad Cow Disease
Tuesday, December 16, 2014
Evidence for zoonotic potential of ovine scrapie prions
Hervé Cassard,1, n1 Juan-Maria Torres,2, n1 Caroline Lacroux,1, Jean-Yves
Douet,1, Sylvie L. Benestad,3, Frédéric Lantier,4, Séverine Lugan,1, Isabelle
Lantier,4, Pierrette Costes,1, Naima Aron,1, Fabienne Reine,5, Laetitia
Herzog,5, Juan-Carlos Espinosa,2, Vincent Beringue5, & Olivier Andréoletti1,
Affiliations Contributions Corresponding author Journal name: Nature
Communications Volume: 5, Article number: 5821 DOI: doi:10.1038/ncomms6821
Received 07 August 2014 Accepted 10 November 2014 Published 16 December 2014
Article tools Citation Reprints Rights & permissions Article metrics
Abstract
Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant
Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie
prions remains unknown. Mice genetically engineered to overexpress the human
prion protein (tgHu) have emerged as highly relevant models for gauging the
capacity of prions to transmit to humans. These models can propagate human
prions without any apparent transmission barrier and have been used used to
confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie
prions transmit to several tgHu mice models with an efficiency comparable to
that of cattle BSE. The serial transmission of different scrapie isolates in
these mice led to the propagation of prions that are phenotypically identical to
those causing sporadic CJD (sCJD) in humans. These results demonstrate that
scrapie prions have a zoonotic potential and raise new questions about the
possible link between animal and human prions.
Subject terms: Biological sciences• Medical research At a glance
why do we not want to do TSE transmission studies on chimpanzees $
5. A positive result from a chimpanzee challenged severly would likely
create alarm in some circles even if the result could not be interpreted for
man. I have a view that all these agents could be transmitted provided a large
enough dose by appropriate routes was given and the animals kept long enough.
Until the mechanisms of the species barrier are more clearly understood it might
be best to retain that hypothesis.
snip...
R. BRADLEY
Suspect symptoms
What if you can catch old-fashioned CJD by eating meat from a sheep
infected with scrapie?
28 Mar 01 Most doctors believe that sCJD is caused by a prion protein
deforming by chance into a killer. But Singeltary thinks otherwise. He is one of
a number of campaigners who say that some sCJD, like the variant CJD related to
BSE, is caused by eating meat from infected animals. Their suspicions have
focused on sheep carrying scrapie, a BSE-like disease that is widespread in
flocks across Europe and North America.
Now scientists in France have stumbled across new evidence that adds weight
to the campaigners' fears. To their complete surprise, the researchers found
that one strain of scrapie causes the same brain damage in mice as sCJD.
"This means we cannot rule out that at least some sCJD may be caused by
some strains of scrapie," says team member Jean-Philippe Deslys of the French
Atomic Energy Commission's medical research laboratory in Fontenay-aux-Roses,
south-west of Paris. Hans Kretschmar of the University of Göttingen, who
coordinates CJD surveillance in Germany, is so concerned by the findings that he
now wants to trawl back through past sCJD cases to see if any might have been
caused by eating infected mutton or lamb...
2001
Suspect symptoms
What if you can catch old-fashioned CJD by eating meat from a sheep
infected with scrapie?
28 Mar 01
Like lambs to the slaughter
31 March 2001
by Debora MacKenzie Magazine issue 2284.
FOUR years ago, Terry Singeltary watched his mother die horribly from a
degenerative brain disease. Doctors told him it was Alzheimer's, but Singeltary
was suspicious. The diagnosis didn't fit her violent symptoms, and he demanded
an autopsy. It showed she had died of sporadic Creutzfeldt-Jakob disease.
Most doctors believe that sCJD is caused by a prion protein deforming by
chance into a killer. But Singeltary thinks otherwise. He is one of a number of
campaigners who say that some sCJD, like the variant CJD related to BSE, is
caused by eating meat from infected animals. Their suspicions have focused on
sheep carrying scrapie, a BSE-like disease that is widespread in flocks across
Europe and North America.
Now scientists in France have stumbled across new evidence that adds weight
to the campaigners' fears. To their complete surprise, the researchers found
that one strain of scrapie causes the same brain damage in mice as sCJD.
"This means we cannot rule out that at least some sCJD may be caused by
some strains of scrapie," says team member Jean-Philippe Deslys of the French
Atomic Energy Commission's medical research laboratory in Fontenay-aux-Roses,
south-west of Paris. Hans Kretschmar of the University of Göttingen, who
coordinates CJD surveillance in Germany, is so concerned by the findings that he
now wants to trawl back through past sCJD cases to see if any might have been
caused by eating infected mutton or lamb.
Scrapie has been around for centuries and until now there has been no
evidence that it poses a risk to human health. But if the French finding means
that scrapie can cause sCJD in people, countries around the world may have
overlooked a CJD crisis to rival that caused by BSE.
Deslys and colleagues were originally studying vCJD, not sCJD. They
injected the brains of macaque monkeys with brain from BSE cattle, and from
French and British vCJD patients. The brain damage and clinical symptoms in the
monkeys were the same for all three. Mice injected with the original sets of
brain tissue or with infected monkey brain also developed the same
symptoms.
As a control experiment, the team also injected mice with brain tissue from
people and animals with other prion diseases: a French case of sCJD; a French
patient who caught sCJD from human-derived growth hormone; sheep with a French
strain of scrapie; and mice carrying a prion derived from an American scrapie
strain. As expected, they all affected the brain in a different way from BSE and
vCJD. But while the American strain of scrapie caused different damage from
sCJD, the French strain produced exactly the same pathology.
"The main evidence that scrapie does not affect humans has been
epidemiology," says Moira Bruce of the neuropathogenesis unit of the Institute
for Animal Health in Edinburgh, who was a member of the same team as Deslys.
"You see about the same incidence of the disease everywhere, whether or not
there are many sheep, and in countries such as New Zealand with no scrapie." In
the only previous comparisons of sCJD and scrapie in mice, Bruce found they were
dissimilar.
But there are more than 20 strains of scrapie, and six of sCJD. "You would
not necessarily see a relationship between the two with epidemiology if only
some strains affect only some people," says Deslys. Bruce is cautious about the
mouse results, but agrees they require further investigation. Other trials of
scrapie and sCJD in mice, she says, are in progress.
People can have three different genetic variations of the human prion
protein, and each type of protein can fold up two different ways. Kretschmar has
found that these six combinations correspond to six clinical types of sCJD: each
type of normal prion produces a particular pathology when it spontaneously
deforms to produce sCJD.
But if these proteins deform because of infection with a disease-causing
prion, the relationship between pathology and prion type should be different, as
it is in vCJD. "If we look at brain samples from sporadic CJD cases and find
some that do not fit the pattern," says Kretschmar, "that could mean they were
caused by infection."
There are 250 deaths per year from sCJD in the US, and a similar incidence
elsewhere. Singeltary and other US activists think that some of these people
died after eating contaminated meat or "nutritional" pills containing dried
animal brain. Governments will have a hard time facing activists like Singeltary
if it turns out that some sCJD isn't as spontaneous as doctors have
insisted.
Deslys's work on macaques also provides further proof that the human
disease vCJD is caused by BSE. And the experiments showed that vCJD is much more
virulent to primates than BSE, even when injected into the bloodstream rather
than the brain. This, says Deslys, means that there is an even bigger risk than
we thought that vCJD can be passed from one patient to another through
contaminated blood transfusions and surgical instruments.
Friday, January 30, 2015
*** Scrapie: a particularly persistent pathogen ***
Thursday, July 24, 2014
*** Protocol for further laboratory investigations into the distribution of
infectivity of Atypical BSE SCIENTIFIC REPORT OF EFSA New protocol for Atypical
BSE investigations
Wednesday, July 15, 2015
*** Additional BSE TSE prion testing detects pathologic lesion in unusual
brain location and PrPsc by PMCA only, how many cases have we missed?
Wednesday, July 29, 2015
Further characterisation of transmissible spongiform encephalopathy
phenotypes after inoculation of cattle with two temporally separated sources of
sheep scrapie from Great Britain
Wednesday, July 29, 2015
Porcine Prion Protein Amyloid or mad pig disease PSE
Thursday, July 30, 2015
SCRAPIE USDA APHIS June 2015 Monthly Report
Tuesday, June 23, 2015
Report on the monitoring and testing of ruminants for the presence of
transmissible spongiform encephalopathies (TSEs) in the EU in 2013 Final version
18 May 2015
Saturday, March 21, 2015
*** Canada and United States Creutzfeldt Jakob TSE Prion Disease Incidence
Rates Increasing
*** HUMAN MAD COW DISEASE nvCJD TEXAS CASE NOT LINKED TO EUROPEAN TRAVEL
CDC ***
Sunday, November 23, 2014
*** Confirmed Variant Creutzfeldt-Jakob Disease (variant CJD) Case in Texas
in June 2014 confirmed as USA case NOT European ***
the patient had resided in Kuwait, Russia and Lebanon. The completed
investigation did not support the patient's having had extended travel to
European countries, including the United Kingdom, or travel to Saudi Arabia. The
specific overseas country where this patient’s infection occurred is less clear
largely because the investigation did not definitely link him to a country where
other known vCJD cases likely had been infected.
Sunday, December 14, 2014
*** ALERT new variant Creutzfeldt Jakob Disease nvCJD or vCJD, sporadic CJD
strains, TSE prion aka Mad Cow Disease United States of America Update December
14, 2014 Report ***
Terry S. Singeltary Sr.
<< Home