Thursday, November 25, 2010

Probable variant Creutzfeldt–Jakob disease in Asia: A case report from Taiwan and review of two prior cases

Probable variant Creutzfeldt–Jakob disease in Asia: A case report from Taiwan and review of two prior cases

Chih-Wen Yang MD1,3, Jong-Ling Fuh MD1,3, Shuu-Jiun Wang MD1,3,*, Jiing-Feng Lirng MD2,3, Chih-Chao Yang MD4, Shih-Jung Cheng MD5 Article first published online: 25 NOV 2010

DOI: 10.1111/j.1440-1819.2010.02151.x

Keywords: magnetic resonance imaging; prion; pulvinar sign; variant Creutzfeldt–Jakob disease

New variant Creutzfeldt–Jakob disease (vCJD) was first identified in the UK in 1996, and was causally linked to bovine spongiform encephalopathy. Herein we report the first case of vCJD in Taiwan: a 34-year-old man who had lived in the UK between 1989 and 1997. The patient presented with depression, irritability, personality change, painful feet and allodynia, followed by gait ataxia and cognitive impairment. Electroencephalograms did not show the typical appearance of sporadic CJD. The cerebrospinal fluid 14-3-3 protein immunoassay was negative. Brain magnetic resonance imaging revealed high signal lesions involving bilateral caudate nuclei, left lentiform nucleus, bilateral dorsomedial thalami and pulvinar on fluid-attenuation inversion recovery, T2- and diffusion-weighted imaging. Prion protein gene analysis showed homozygous for methionine at codon 129. The patient developed akinetic mutism at 16 months and died at 28 months after onset. The clinical presentation and neuroimaging findings were compatible with the vCJD cases reported since 1996, and met the World Health Organization Case Definition for probable vCJD. In this communication, we also review two other cases of vCJD in Asia. All three cases were assumed as imported cases from the UK because of the residential or travel history of the patients.;jsessionid=F842A68523935DD3B42E17DD8D525731.d01t01?systemMessage=There+will+be+a+release+of+Wiley+Online+Library+scheduled+for+Saturday+27th+November+2010.+Access+to+the+website+will+be+disrupted+as+follows%3A+New+York+0630+EDT+to+0830+EDT%3B+London+1130+GMT+to+1330+GMT%3B+Singapore+1930+SGT+to+2130+SGT

European Journal of Epidemiology Volume 25, Number 5, 341-347, DOI: 10.1007/s10654-010-9446-4


Incidence of Creutzfeldt-Jakob disease in Taiwan: a prospective 10-year surveillance

Chien-Jung Lu, Yu Sun and Shun-Sheng Chen

Abstract This study was performed to estimate the incidence of Creutzfeldt-Jakob Disease (CJD) in Taiwan from 1998 to 2007. Suspected cases of CJD were reported to the Taiwan Creutzfeldt-Jakob Disease Surveillance Unit, a nationwide, hospital-based case report system initiated since 1996 to prospectively conduct a CJD epidemiological study. Consecutive patients who met the diagnostic criteria recommended by the World Health Organization were enrolled. The clinical information of each suspected case was collected and case ascertainment was performed by an expert committee. A total of 123 sporadic CJD were identified without any iatrogenic or new variant CJD cases. The overall annual incidence rate (95% CI) was 0.55 (0.46–0.65) cases per million person-year. There was no statistically significant difference between the calendar year of disease onset (P = 0.97). The incidence rates were not significantly different between women and men (P = 0.63). Age was the main factor for the risk of CJD (P < 0.0001). Age-specific incidence rate increased after the age of 40 years with the peak being in the 70–79 years age group. Our data showed low annual incidence rate and high frequency of methionine homozygous prion protein genotype of sCJD in Taiwan. This report provided important epidemiological data on ethnic Chinese. Keywords Creutzfeldt-Jakob disease - Epidemiology - Incidence - Genotype - Ethnic Chinese

Taiwan advises against import of U.S. beef tongues

AIT Director defends tongues as without risk

Taiwan News, Staff Writer 2010-04-20 02:53 PM Fonts Size:

TAIPEI (Taiwan News) – In a surprise reversal of policy, the government told meat traders Tuesday it advised them against importing beef tongues, diaphragms and testicles from the United States, despite a claim by Washington’s top representative in Taiwan that they posed no threat to health. The government said inspectors would check each case of beef including tongues, diaphragms and testicles, instead of just the first case of each batch, as it had announced earlier.

“Consumers still have doubts about the safety of tongues and testicles, so it’s best not to import them,” said Kang Jaw-jou, director-general of Taiwan’s Food and Drug Administration.

The U.S. Department of Agriculture announced last week it would allow the export to Taiwan of hanging tenders, tongues, tails, penises, testicles, tendons, and diaphragms from cattle younger than 30 months or slaughtered since the beginning of the month.

While Taiwan agreed the imports were legal under a protocol both countries signed last October, there was still widespread doubt about the new products. Tongues could still pose a risk for bovine spongiform encephalopathy or mad cow disease, consumers groups and lawmakers said.

After first approving of the new products, government officials held a news conference Tuesday to announce they advised traders against importing the products for the time being, even though they would not impose a ban.

An importer who saw his application for 453 kilograms of U.S. beef products approved on April 15 decided to cancel his order, said Huang Chih-peng, the director-general of the Ministry of Economic Affairs’ Bureau of Foreign Trade, which reviews the applications.

Huang said he had personally talked to the company, which canceled its plan in a concrete response to health doubts.

Inspectors would also test each case or box of tongues and related products, and not just one case from each batch, the government said.

American Institute in Taiwan Director William Stanton said the beef products were completely safe. Some people would bring up the subject for political purposes, but this had nothing to do with health, he said.

Tongues had never been regarded as a risky part of cattle, and the protocol never banned the product, Stanton said. He rejected a statement by Vice Foreign Minister Shen Lyu-shun to the effect that last week’s decision by the USDA to allow the export of tongues was made unilaterally without consulting Taiwan.

The Office of the United States Trade Representative said Monday it was deeply disappointed with Taiwan’s decision to toughen up inspections because it was not consistent with the protocol.

Lawmakers accused the government of going against the Legislative Yuan’s January decision to ban the import of internal organs by agreeing to allow diaphragms and testicles.

William Lai of the Democratic Progressive Party said that the beef products were included under the section for internal organs during Taiwan-U.S. negotiations and therefore also fell under the Legislative Yuan ban.

Ruling Kuomintang lawmaker Tsai Chin-lung told reporters he did not dare eat the beef tongues and testicles because they were too risky. His KMT colleague Wu Ching-chih agreed and said the products should be banned.

----- Original Message -----

From: Terry S. Singeltary Sr.
Sent: Monday, November 02, 2009 10:20 AM

Dear Honorable Chairman Hsieh Tien-jen and general of the Consumers' Foundation, Wu Jia-cheng,

A kind greetings from Bacliff, Texas !

I wish to send you urgent data on the truth about mad cow disease in the USA.


----- Original Message -----

From: Terry S. Singeltary Sr.
To: Cc:
Sent: Monday, April 19, 2010 12:55 PM

A Kind Greetings from Bacliff, Texas.

I send this information as a follow up and update...

Kindest Regards, Terry

North Dakota Firm Recalls Whole Beef Head Products That Contain Prohibited Materials


Congressional and Public Affairs (202) 720-9113 Catherine Cochran

WASHINGTON, April 5, 2010 - North American Bison Co-Op, a New Rockford, N.D., establishment is recalling approximately 25,000 pounds of whole beef heads containing tongues that may not have had the tonsils completely removed, which is not compliant with regulations that require the removal of tonsils from cattle of all ages, the U.S. Department of Agriculture's Food Safety and Inspection Service (FSIS) announced today.

Tonsils are considered a specified risk material (SRM) and must be removed from cattle of all ages in accordance with FSIS regulations. SRMs are tissues that are known to contain the infective agent in cattle infected with Bovine Spongiform Encephalopathy (BSE), as well as materials that are closely associated with these potentially infective tissues. Therefore, FSIS prohibits SRMs from use as human food to minimize potential human exposure to the BSE agent.


Wednesday, April 30, 2008

Consumption of beef tongue: Human BSE risk associated with exposure to lymphoid tissue in bovine tongue in consideration of new research findings

Sunday, October 18, 2009

Wisconsin Firm Recalls Beef Tongues That Contain Prohibited Materials SRM WASHINGTON, October 17, 2009

Thursday, October 15, 2009

Nebraska Firm Recalls Beef Tongues That Contain Prohibited Materials SRM WASHINGTON, Oct 15, 2009

Tuesday, December 29, 2009

Taiwan to resume USA beef ban over mad cow disease threat

Tuesday, November 10, 2009

Surveillance On the Bovine Spongiform Encephalopathy and rabies in Taiwan and USA

Monday, November 30, 2009

Taiwan, USDA, and USA beef, what the consumer does not know, could kill them

Monday, November 22, 2010

Atypical transmissible spongiform encephalopathies in ruminants: a challenge for disease surveillance and control


Sunday, November 21, 2010

Preclinical Deposition of Pathological Prion Protein in Muscle of Experimentally Infected Primates and potential Iatrogenic TSE there from

Thursday, November 18, 2010



Labels: ,

Tuesday, November 23, 2010

Prosecutors call for prison terms for CJD growth hormone doctors

France -

Article published the Monday 22 November 2010 - Latest update : Monday 22 November 2010

Prosecutors call for prison terms for growth hormone doctors

A man holds a sign that says "aberration, infected hormone, justice flouted" at the courthouse after the first trial AFP By RFI Prosecutors have called for a three-year prison sentence for a biochemist accused of causing the wrongful death of 119 people to whom he administered tainted growth hormones in the 1980s. The months-long appeals trial ends Wednesday against Fernand Dray and other medical staff involved in administering the hormones.

"Professor Dray’s specific fault is an accumulation of imprudence and negligence," said prosecutor Bruno Sturlese, who asked for the maximum sentence for Dray.

The 88-year-old is the former head of a laboratory at the prestigious Pasteur Institute, which manufactured the growth hormone. Dray’s lawyers have called for a dismissal of the charges.

Prosecutors are also calling for six to nine months of prison for paediatrician Elisabeth Mugnier, 61, for involuntary homicide.

The hormone, which was manufactured from the glands from unregulated cadavers, turned out to transmit Creutzfeldt-Jakob (MCJ) disease. It was administered to 1,698 children between 1980 and 1988.

Victims have already received some 31 million euros in damages from the government.

Families of those who took the hormones have been involved in court cases against the manufacturers and administrators for almost 20 years to prove that they acted with the knowledge that the drug was infected.

The judge in the first case against Dray determined there was not enough evidence that he acted knowingly, and he was acquitted in January 2009.

The appeals case ends Wednesday, and a verdict is not expected before the spring.

tags: France - Health/Medicine - Judge - Law - Trial

France - Article published the Monday 04 October 2010 - Latest update : Monday 04 October 2010

Relatives appeal over French growth hormone deaths

Fernand Dray, 88-year-old manager of an Institut Pasteur lab appears in court on October 2010 AFP By RFI Relatives of patients who died after being prescribed growth hormones are appealing a 2009 court ruling which cleared doctors who had prescribed the hormones.

Since the trial’s first hearing in 2008, five patients have died years after taking growth hormones which were infected with the Creutzfeldt-Jakob disease, a degenerative brain disease.

In the 1980s, doctors prescribed growth hormones to 1,698 children who were deemed too small. Two-hundred children have since died and relatives have launched legal action against paediatricians and biologists who allowed the drug to be prescribed.

In January 2009 a French court ruled that the doctors could not have known that the hormones – removed from corpses – were contaminated.

The prosecution is appealing against the court ruling and insists that three of the doctors should be held responsible for the deaths.

On Monday, hundreds of families converged on Paris to witness the trial. Although relatives of the victims hope that French judges will condemn several doctors, many have lost hope.

“I have come today, but without much hope. I am left to take responsibility for this treatment that was given to my son. That’s not enough,” Lea Le Thaeno, mother of Benoît, who died at the age of 28, told the AFP wire service.

More deaths may be expected in coming years as the Creutzfeldt-Jakob disease has an incubation period of over 30 years and may be transmitted to the patient’s children.

tags: France - Health - Justice

Today in France 6 February 2008

Growth hormone victims have their day in court

Article published on the 2008-02-06 Latest update 2008-02-06 10:15 TU

Members of the French association of growth hormone's victims (AVHC) and others in front of the Paris court on 6 February. (Photo: AFP) Seven french doctors and health officials went on trial Wednesday accused of manslaughter and fraud. They allegedly ignored dangers associated with growth hormones taken from the pituitary glands of cadavers that may have been infected with a varient of mad cow. More than 100 children who were given the hormones in the 1980s have since died. Wednesday was the first time victims and their families faced the accused. Sarah Elzas reports on the opening of the four-month long trial.

PPo4-14: Dura Mater-Associated Creutzfeldt-Jakob Disease in Italy

Anna Ladogana,1 Maria Puopolo,1 Loredana Ingrosso,1 Susanna Almonti,1 Vittorio Mellina,1 Giulio Rosati,1 Renato Ortu,2 Orso Bugiani,2 Fabrizio Tagliavini,2 Vincenzo La Bella,2 Federico Piccoli,2 Maria Valeria Saddi,2 Salvatore Bruno Murgia,3 Giorgio Giovanni Bono,3 Salvatore Castellino,3 Paolo Fociani,3 Piero Parchi3 and Maurizio Pocchiari3

1Istituto Superiore di Sanità, Roma; Ospedale Pertini, Roma; Ospedale Civile, Rieti; University of Sassari, Sassari; IRCCS C. Besta Milano; IRCCS C. Besta Milano; 2University of Palermo, Palermo; Ospedale S. Francesco, Nuoro; 3Ospedale di Circolo di Varese e Fondazione Macchi, Varese; Ospedale Civile, Ragusa; Ospedale L. Sacco, Milano; University of Bologna, Bologna; Istituto Superiore di Sanità, Roma

Key words: dura mater, CJD, transmission

During the years 1993 to 2008, 40 suspected CJD cases were reported to the Italian CJD Registry with a previous history of neurosurgery, and in seven of these cases commercial "dura mater" (DM) grafts were clearly stated in the record of the surgical intervention. Of these seven cases, one case did not receive a final diagnosis of CJD, while in six cases a diagnosis of definite or probable iatrogenic DM-associated CJD was made. Further analysis of these iatrogenic CJD patients found a time-and-space cluster for two patients treated on June 1986 within ten days in the same hospital by neurosurgical intervention for traumatic head injury. The six DM-CJD patients were studied for their clinical and diagnostic findings. The DM-CJD patients had a mean incubation time (period between surgery and the onset of the disease) of 178.3 months ranging from 94 to 287 months, and a mean age at onset of 40.5 (range 21–75) years. The median disease duration was 12 (range 3–46) months. Five cases were clinically classified as probable CJD (typical EEG n = 2 and 14-3-3 proteins positive test n = 4) and one case as possible CJD. Three patients were MM homozygous and two were VV at codon 129 of the prion protein gene (PRNP), while in one case the genetic analysis of PRNP was not done. The MRIs showed basal ganglia signal increase in three out of six cases. Three patients underwent necroscopy and were classified as definite, while three cases were finally classified as probable CJD.

also please see the attached pdf file of the ;

International Prion Congress: From agent to disease September 8–11, 2010 Salzburg, Austria Previously published online:

WHO Tables on Tissue Infectivity Distribution in Transmissible Spongiform Encephalopathies Updated 2010


The assignment of tissues to high, low, and undetected infectivity categories is based exclusively upon observations of naturally occurring disease, or primary experimental infection by the oral route (in ruminants). The Tables do not include results from disease models using strains of TSE that have been adapted to experimental animals, because passaged strain phenotypes can differ significantly and unpredictably from those of naturally occurring disease. However, for tissues and fluids of exceptional public health interest, such as muscle, intestine, skin, secretions and excretions, experimental results have been indicated in footnotes.

Because the detection of misfolded prion protein (PrPTSE) broadly parallels infectivity titers in various tissues [Beekes et al 1996; Andreoletti et al 2004], PrPTSE testing results are presented in parallel with bioassay data.

Although a given tissue may be positive or negative in different varieties of TSE, the expert group considered a tissue to be potentially infectious even if a positive result occurred in only a single disease. The categorical assignment of tissues will almost certainly undergo further revision as new data accumulate from increasingly sensitive tests.

IA: High-infectivity tissues: CNS tissues that attain a high titer of infectivity in the later stages of all TSEs, and certain tissues that are anatomically associated with the CNS.

IB: Lower-infectivity tissues: peripheral tissues that have tested positive for infectivity and/or PrPTSE in at least one form of TSE.

IC: Tissues with no detectable infectivity: tissues that have been examined for infectivity and/or PrPTSE with negative results.

Data entries are shown as follows:

+ Presence of infectivity or PrPTSE

- Absence of detectable infectivity or PrPTSE

NT Not tested

NA Not applicable ?

Uncertain interpretation

( ) Limited or preliminary data

[ ] Infectivity or PrPTSE data based exclusively on bioassays in transgenic

(Tg)mice over-expressing the PrP-encoding gene or PrPTSE amplification methods.

A word of caution is offered about tissues in Table IB for which positive results are so far limited to either detection of PrPTSE using amplification techniques (PMCA), or infectivity bioassays in Tg mice that over-express PrP. The amounts of pathological protein or infectious agent detected by these exquisitely sensitive assays may well fall below the threshold of transmissibility for normal animals and humans. WHO Tables on Tissue Infectivity Distribution in Transmissible Spongiform Encephalopathies 5

A good example is illustrated in the studies of urine and feces from deer infected with CWD: bioassays using normal deer as recipient subjects were negative; subsequent bioassays performed in Tg mice were positive. A similar discordance was observed for BSE muscle inoculated into cattle and Tgmice. Until more evidence is compiled showing that positive results in experimental PMCA and Tg mouse assays equate to a risk of transmitting disease under natural conditions, it cannot be assumed that such results imply the existence of a substantial risk to the health of animals or humans.

Considering the succession of updated Tables of the past few years, and the fact that inflammation has been shown to result in PrPTSE deposition in tissues that are not normally involved in TSE pathogenesis, it is evident that as testing continues, more tissues will find their way from Table IC into Table IB (but probably not from either Table IC or IB into Table IA). It is also evident that the data generated to date are far from complete, and that a great deal more work needs to be done if conclusions about the tissue distribution and significance of infectivity in a given TSE are to be based on direct measurements rather than by analogy to other forms of the disease.

Finally, it is critically important to understand that categories of infectivity are not the same as categories of risk, which require consideration not only of the level of infectivity in tissue, but also of the amount of tissue to which a person or animal is exposed, and the route by which infection is transmitted. For example, although the level of tissue infectivity is the most important factor in estimating the risk of transmission by instrument crosscontamination during surgical procedures (e.g., neurosurgery versus general surgery), it will be only one determinant of the risk of transmission by blood transfusions, in which a large amount of low-infectivity blood is administered intravenously, or the risk of transmission by foodstuffs that, irrespective of high or low infectivity, involve a comparatively inefficient oral route of infection.


Table IC: Tissues with no detected infectivity or PrPTSE


Musculo-skeletal tissues

Bone NT - NT - - NT NT NT NT NT

Tendon NT - NT - - NT NT NT NT NT


please see full text with tables here ;

WHO Tables on Tissue Infectivity Distribution in Transmissible Spongiform Encephalopathies Updated 2010

also in the references at bottom i saw ;

12. A single positive marrow in multiple transmission attempts from cattle orally dosed with BSE-infected brain [Wells et al., 1999; Wells et al., 2005; Sohn et al., 2009].

Thursday, July 08, 2010

Nosocomial transmission of sporadic Creutzfeldt–Jakob disease: results from a risk-based assessment of surgical interventions Public release date: 8-Jul-2010

Tuesday, May 04, 2010

Review of the Human Pituitary Trust Account and CJD Issue 20 January 2010

Saturday, January 26, 2008


09:00 - 26 January 2008

Sunday, November 21, 2010

Preclinical Deposition of Pathological Prion Protein in Muscle of Experimentally Infected Primates and potential Iatrogenic TSE there from

Monday, February 01, 2010

Import Alert 57-20 and 84-03 Human Dura Mater and risk factors there from due to Creutzfeldt Jakob Disease (CJD)

Creutzfeldt-Jakob Disease, CJD Support Group for short statured children of the 1970's and 1980's. Recommendations for Unapproved/Unregistered recipiants

Report of a WHO Consultation on Medicinal and other Products in Relation to Human and Animal Transmissible Spongiform Encephalopathies

With the participation of the Office International des Epizooties (OIE)

Geneva, Switzerland 24-26 March 1997

Early cognitive decline in Creutzfeldt-Jakob disease associated with human growth hormone treatment

R J Cordery, M Hall, L Cipolotti, S Al-Sarraj, D G O’Donovan, L Davidson, P Adlard, M N Rossor


Creutzfeldt-Jakob disease 38 years after diagnostic use of human growth hormone

E A Croes, G Roks, G H Jansen, P C G Nijssen, C M van Duijn


J Neurol Neurosurg Psychiatry 2002;72:792-793

A 47 year old man is described who developed pathology proven Creutzfeldt-Jakob disease (CJD) 38 years after receiving a low dose of human derived growth hormone (hGH) as part of a diagnostic procedure. The patient presented with a cerebellar syndrome, which is compatible with iatrogenic CJD. This is the longest incubation period described so far for iatrogenic CJD. Furthermore, this is the first report of CJD after diagnostic use of hGH. Since the patient was one of the first in the world to receive hGH, other cases of iatrogenic CJD can be expected in the coming years.

Prion diseases are potentially transmissible. Human to human transmission was first reported in 1974, when a 55 year old woman was described who developed symptoms of Creutzfeldt-Jakob disease (CJD) 18 months after a corneal transplant.1 Since then, transmission has been reported after stereotactic electroencephalographic (EEG) depth recording, human growth hormone (hGH) and gonadotrophin treatment, and dura mater transplantation.2-5 More than 267 patients with iatrogenic CJD are known today and their number is growing.6 The most important iatrogenic cause of CJD is still contaminated cadaveric hGH. Exposure to contaminated hGH occurred before 1985, when recombinant growth hormone became available. In a recent study, incubation periods in 139 patients with hGH associated CJD were found to range from 5-30 years, with a median of 12 years.6 One of the factors influencing incubation time is genotype on polymorphic codon 129 of the prion protein gene.7 The incubation time is significantly shorter in people who are homozygous for either methionine or valine on this polymorphism.7

We describe the second patient with hGH related CJD in the Netherlands. The patient developed the disease 38 years after hGH injections. To our knowledge, this is the longest incubation period described for any form of iatrogenic CJD. Further-more, our patient was not treated with hGH but only received a low dose as part of a diagnostic procedure.


This patient presented at the age of 47 years with paraesthesia in both arms for six months, difficulty with walking for four weeks, and involuntary movements of mainly the upper extremities of two weeks' duration. He did not notice any change in cognitive function, although his twin sister had noticed minor memory disturbances. There was no family history of neurological disease. During childhood the patient had experienced a growth delay compared with his twin sister and with the average in the Netherlands. When he was 9 years old, a nitrogen retention test with 6 IU hGH over five days was performed to exclude growth hormone deficiency. Since the result was not decisive, a quantitative amino acid test was performed, which measures 30 amino acids during fasting and one, two, and three hours after growth hormone injection. No abnormal amino acid concentrations were found making the diagnosis of primordial dwarfism most likely. Therefore, no treatment with hGH was given.

On neurological examination we found a slight dysarthria without aphasia. Cranial nerve function was normal. Walking was unstable and wide based. During movements of the upper extremities myoclonic jerks were present. Sensation, muscle tone, and strength were normal. Co-ordination was impaired in all four limbs with a disturbed balance. Tendon reflexes were brisk at the arms and increased at the legs with a clonus in the ankle reflex. Plantar responses were both normal. On the mini mental state examination, the patient scored 30/30. Routine laboratory investigation, thyroid function, vitamin concentrations (B-1, B-6, B-12, and E), and copper metabolism were normal. Admission EEG examination showed generalised arrhythmic slow activity with diffuse spikes and spike waves. EEG examination two months later showed a further slowing of the rhythm with bilateral diphasic sharp waves but was not typical for CJD. Cerebral magnetic resonance imaging was normal. Cerebrospinal fluid examination showed 1 cell/3 µl, normal glucose and protein concentrations, and a strongly positive 14-3-3 protein test. The patient was homozygous for methionine on the PRNP codon 129 polymorphism. On clinical grounds, CJD was diagnosed. Within one month the patient's condition deteriorated rapidly and because of severe disturbances in coordination and progressive myoclonus he became bedridden. An eye movement disorder developed with slow saccadic and dysmetric eye movements. Temperature became unstable with peaks of 39°C without an infectious focus, for which a disorder of autoregulation was presumed. Until a very advanced stage, cognitive function was intact. The patient died five months after admission. The diagnosis of CJD was confirmed at necropsy. The brain weighed 990 g and showed clear cortical and cerebellar atrophy. Spongiosis, neuronal loss, and gliosis were found predominantly in the putamen, caudate nucleus, and basotemporal and cerebellar cortex; the cerebellum was the most severely affected of these. Vacuoles ranged from 2-12 µm. No amyloid or Kuru plaques were found. Immunohistochemical staining (3F4 antibody 1:1000, Senetek, USA) was clearly positive for prion protein accumulation in a "synaptic" distribution. Most deposition was found in the stratum moleculare of the cerebellum.


We describe a 47 year old patient who developed pathology proven CJD 38 years after hGH injections. The patient was never treated with hGH but received a small dose as part of a diagnostic procedure. The onset of CJD was signalled by prodromal symptoms of paraesthesia followed by a rapidly progressive ataxia. The disease presentation and course with predominantly cerebellar and eye movement disorders are compatible with iatrogenic CJD caused by hGH treatment.6 8

Growth hormone treatment was first described in 1958 but hGH was not produced on a larger scale from human pituitary glands until the beginning of the 1960s. In the Netherlands growth hormone extraction started in 1963 and was soon centrally coordinated. Until 1979 growth hormone was extracted non-commercially from pituitaries by a pharmaceutical company. In 1971 commercial products also became available. Our patient was one of the first to receive hGH in the Netherlands but the origin of this product was not recorded. A causal relation can therefore not be established with full certainty, but coincidentally receiving growth hormone and developing this very rare disease is unlikely. Since the clinical course in this relatively young patient is in accordance with an iatrogenic cause, we think the probability is high that the hGH injections explain the development of CJD in this patient.

The first Dutch patient with hGH related CJD died in 1990. 9 During several periods from 1963 to 1969 she received intramuscular injections of hGH. During an unknown period the hGH was derived from South America. At age 39, 27 years after starting the treatment, she developed an ataxic gait, slurred speech, sensory disorders, and myoclonus, but her cognitive function remained normal. Postmortem examination of the brain confirmed the diagnosis of CJD.9 Following the identification of this patient, a retrospective study was started to trace all 564 registered hGH recipients who were treated before May 1985. Until January 1995, none of these was suspected of having CJD.10 Since 1993 prospective surveillance for all forms of human prion disease has been carried out in the Netherlands and, apart from the patient described above, a further two patients with iatrogenic CJD have been identified, who developed the disease after dura mater transplantation.11

An incubation period as long as 38 years had never been reported for iatrogenic CJD. Huillard d'Aignaux et al7 studied the incubation period in 55 patients with hGH related CJD in a cohort of 1361 French hGH recipients. The median incubation period was between 9 and 10 years. Under the most pessimistic model, the upper limit of the 95% confidence interval varied between 17 and 20 years. Although the infecting dose cannot be quantified, it can be speculated that the long incubation period in our patient is partly explained by the administration of a limited amount of hGH. This hypothesis is supported by experimental models, in which higher infecting doses usually produce shorter incubation periods.6 Since our patient was one of the first in the world to receive hGH, this case indicates that still more patients with iatrogenic CJD can be expected in the coming years. Another implication of our study is that CJD can develop even after a low dose of hGH. This case once more testifies that worldwide close monitoring of any form of iatrogenic CJD is mandatory.


We are grateful to M Jansen PhD MD for his search for the origin of the growth hormone and P P Taminiau MD. CJD surveillance in the Netherlands is carried out as part of the EU Concerted Action on the Epidemiology of CJD and the the EU Concerted Action on Neuropathology of CJD, both funded through the BIOMED II programme, and is supported by the Dutch Ministry of Health. This surveillance would not have been possible without the cooperation of all Dutch neurologists and geriatricians.


Authors' affiliations

E A Croes, G Roks*, C M van Duijn, Genetic Epidemiology Unit, Department of Epidemiology and Biostatistics, Erasmus University Medical Centre Rotterdam, PO Box 1738, 3000 DR Rotterdam, Netherlands

P C G Nijssen, Department of Neurology, St Elisabeth Hospital, PO Box 90151, 5000 LC Tilburg, Netherlands

G H Jansen, Department of Pathology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands

*Also the Department of Neurology, St Elisabeth Hospital

Correspondence to: Professor C M van Duijn, Genetic Epidemiology Unit, Department of Epidemiology and Biostatistics, Erasmus University Medical Centre Rotterdam, PO Box 1738, 3000 DR Rotterdam, Netherlands;

Received 27 December 2001 In revised form 1 March 2002 Accepted 12 March 2002

Competing interests: none declared


1 Duffy P, Wolf J, Collins G, et al. Possible person-to-person transmission of Creutzfeldt-Jakob disease. N Engl J Med 1974;290:692-3.

2 Bernoulli C, Siegfried J, Baumgartner G, et al. Danger of accidental person-to-person transmission of Creutzfeldt-Jakob disease by surgery. Lancet 1977;i:478-9.

3 Koch TK, Berg BO, De Armond SJ, et al. Creutzfeldt-Jakob disease in a young adult with idiopathic hypopituitarism: possible relation to the administration of cadaveric human growth hormone. N Engl J Med 1985;313:731-3.

4 Cochius JI, Burns RJ, Blumbergs PC, et al. Creutzfeldt-Jakob disease in a recipient of human pituitary-derived gonadotrophin. Aust NZ J Med 1990;20:592-3.

5 Thadani V, Penar PL, Partington J, et al. Creutzfeldt-Jakob disease probably acquired from a cadaveric dura mater graft: case report. J Neurosurg 1988;69:766-9.

6 Brown P, Preece M, Brandel JP, et al. Iatrogenic Creutzfeldt-Jakob disease at the millennium. Neurology 2000;55:1075-81.

7 Huillard d'Aignaux J, Costagliola D, Maccario J, et al. Incubation period of Creutzfeldt-Jakob disease in human growth hormone recipients in France. Neurology 1999;53:1197-201.

8 Billette de Villemeur T, Deslys JP, Pradel A, et al. Creutzfeldt-Jakob disease from contaminated growth hormone extracts in France. Neurology 1996;47:690-5.

9 Roos RA, Wintzen AR, Will RG, et al. Een patiënt met de ziekte van Creutzfeldt-Jakob na behandeling met humaan groeihormoon. Ned Tijdschr Geneeskd 1996;140:1190-3.

10 Wientjens DP, Rikken B, Wit JM, et al. A nationwide cohort study on Creutzfeldt-Jakob disease among human growth hormone recipients. Neuroepidemiology 2000;19:201-5.

11 Croes EA, Jansen GH, Lemstra AF, et al. The first two patients with dura mater associated Creutzfeldt-Jakob disease in the Netherlands. J Neurol 2001;248:877-81.



Possible iatrogenic Creutzfeldt-Jakob Disease in an adult male 50 years after treatment with human chorionic gonadotrophin

Brian Appleby1, Paul Brown2 1Johns Hopkins University School of Medicine, USA; 2CEA/DSV/iMETI/SEPIA, France

Background: Known causes of iatrogenic Creutzfeldt-Jakob disease (iCJD) include cadaverous corneal transplants, dural mater grafts, human growth hormone (hGH), neurosurgical depth electrodes, and neurosurgical instrument contamination. Four cases of iCJD from human gonadotrophin have been described to date, all of whom have been women.

Objectives: To present a case of possible iCJD from human chorionic gonadotrophin (hCG) and review data from four other cases Methods: Case report and descriptive analysis

Results: A 62-year-old Caucasian man developed ataxia that resulted in frequent falls and an initial diagnosis of benign positional vertigo. Further workup including brain magnetic resonance imaging (MRI), electroencephalogram (EEG), and a lumbar puncture were unrevealing. A cerebrospinal 14-3-3 protein analysis was indeterminate. At the end of the third month of his illness, he developed short-term amnesia, disorientation, and confabulation. A repeat EEG showed generalized slowing without evidence of periodic sharp wave complexes and a repeat 14-3-3 analysis was positive. A second brain MRI showed hyperintensity in the basal ganglia on diffusion- weighted images. He died following a four-month illness. Severe vacuolization was noted on microscopic examination and Western blot analyses detected type II prion proteins. Genomic analyses detected a silent polymorphism at codon 117 and valine homozygousity at codon 129 of the prion protein gene. Further review of his medical records revealed a history of cryptorchidism and treatment with hCG as a child in the 1940’s-1950’s.

Discussion: This case report describes a possible case of iCJD from hCG injections and is unique in that the patient was male and the incubation period approached 50 years. His clinical presentation, EEG findings, and codon 129 homozygousity are similar to previously described cases.



Sunday, November 21, 2010

Preclinical Deposition of Pathological Prion Protein in Muscle of Experimentally Infected Primates and potential Iatrogenic TSE there from

Preclinical Deposition of Pathological Prion Protein in Muscle of Experimentally Infected Primates


Susanne Krasemann1, Melanie Neumann1, Markus Geissen1, Walter Bodemer2, Franz-Josef Kaup2, Walter Schulz-Schaeffer3, Nathalie Morel4, Adriano Aguzzi5#*, Markus Glatzel1#*

1 Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 2 German Primate Center, Göttingen, Germany, 3 Institute of Neuropathology, University Hospital Göttingen, Göttingen, Germany, 4 CEA, IBitec-S, Service de Pharmacologie et dlmmunoanalyse, CEA/Saclay, Gif sur Yvette, France, 5 Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland

Abstract Top

Prion diseases are transmissible fatal neurodegenerative disorders affecting humans and animals. A central step in disease progression is the accumulation of a misfolded form (PrPSc) of the host encoded prion protein (PrPC) in neuronal and non-neuronal tissues. The involvement of peripheral tissues in preclinical states increases the risk of accidental transmission. On the other hand, detection of PrPSc in non-neuronal easy-accessible compartments such as muscle may offer a novel diagnostic tool. Primate models have proven invaluable to investigate prion diseases. We have studied the deposition of PrPSc in muscle and central nervous system of rhesus monkeys challenged with sporadic Creutzfeldt-Jakob disease (sCJD), variant CJD (vCJD) and bovine spongiform encephalopathy (BSE) in preclinical and clinical stage using biochemical and morphological methods. Here, we show the preclinical presence of PrPSc in muscle and central nervous system of rhesus monkeys experimentally infected with vCJD.


In summary, we could show that (i) PrPSc builds up exponentially in the CNS of vCJD infected primates, (ii) PrPSc is detectable in both CNS and the muscular compartment preclinically in vCJD challenged rhesus monkeys, (iii) PrPSc distribution in muscle tissue of clinical and subclinically infected primates is inhomogeneous.

These data should be taken into consideration when devising appropriate measures against iatrogenic transmission of prion diseases or when employing muscle biopsy in diagnosing human prion disease [15], [21], [23], [26]

Citation: Krasemann S, Neumann M, Geissen M, Bodemer W, Kaup F-J, et al. (2010) Preclinical Deposition of Pathological Prion Protein in Muscle of Experimentally Infected Primates. PLoS ONE 5(11): e13906. doi:10.1371/journal.pone.0013906

Editor: Per Westermark, Uppsala University, Sweden

Received: March 18, 2010; Accepted: October 18, 2010; Published: November 11, 2010

Copyright: © 2010 Krasemann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was financed by the European Union grant EU BMH4 CT 98 7026, the Deutsche Forschungs Gemeinschaft (DFG) grants KA 864/2-1 and FOR885. S.K. was supported by the Deutsches Primaten Zentrum Foerderpreis, M.N. was supported by DFG grant Gl 589/2-1. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Competing interests: The authors have declared that no competing interests exist.

* E-mail: (AA);, (MG)

# These authors contributed equally to this work.

WHO Tables on Tissue Infectivity Distribution in Transmissible Spongiform Encephalopathies Updated 2010

Monday, June 22, 2009

PrPTSE in muscle-associated lymphatic tissue during the preclinical stage of mice orally-infected with BSE

Prions in Skeletal Muscles of Deer with Chronic Wasting Disease

Rachel C. Angers,1* Shawn R. Browning,1*? Tanya S. Seward,2 Christina J. Sigurdson,4? Michael W. Miller,5 Edward A. Hoover,4 Glenn C. Telling1,2,3

1Department of Microbiology, Immunology and Molecular Genetics, 2Sanders Brown Center on Aging, 3Department of Neurology, University of Kentucky, Lexington, KY 40536, USA. 4Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA. 5Colorado Division of Wildlife, Wildlife Research Center, Fort Collins, CO 80526, USA.

*These authors contributed equally to this work.

?Present address: Department of Infectology, Scripps Research Institute, 5353 Parkside Drive, RF-2, Jupiter, Florida, 33458, USA.

?Present address: Institute of Neuropathology, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland.

To whom correspondence should be addressed: E-mail:

Prions are transmissible proteinaceous agents of mammals that cause fatal neurodegenerative diseases of the central nervous system (CNS). The presence of infectivity in skeletal muscle of experimentally infected mice raised the possibility that dietary exposure to prions might occur through meat consumption (1). Chronic wasting disease (CWD), an enigmatic and contagious prion disease of North American cervids, is of particular concern. The emergence of CWD in an increasingly wide geographic area and the interspecies transmission of bovine spongiform encephalopathy (BSE) to humans as variant Creutzfeldt Jakob disease (vCJD) have raised concerns about zoonotic transmission of CWD.

To test whether skeletal muscle of diseased cervids contained prion infectivity, Tg(CerPrP)1536 mice (2) expressing cervid prion protein (CerPrP), were inoculated intracerebrally with extracts prepared from the semitendinosus/semimembranosus muscle group of CWD-affected mule deer or from CWD-negative deer. The availability of CNS materials also afforded direct comparisons of prion infectivity in skeletal muscle and brain. All skeletal muscle extracts from CWD-affected deer induced progressive neurological dysfunction in Tg(CerPrP)1536 mice with mean incubation times ranging between 360 and ~490 d, whereas the incubation times of prions from the CNS ranged from ~230 to 280 d (Table 1). For each inoculation group, the diagnosis of prion disease was confirmed by the presence of PrPSc in the brains of multiple infected Tg(CerPrP)1536 mice (see supporting online material for examples). In contrast, skeletal muscle and brain material from CWD-negative deer failed to induce disease in Tg(CerPrP)1536 mice (Table 1) and PrPSc was not detected in the brains of sacrificed asymptomatic mice as late as 523 d after inoculation (supporting online material).

Our results show that skeletal muscle as well as CNS tissue of deer with CWD contains infectious prions. Similar analyses of skeletal muscle BSE-affected cattle did not reveal high levels of prion infectivity (3). It will be important to assess the cellular location of PrPSc in muscle. Notably, while PrPSc has been detected in muscles of scrapie-affected sheep (4), previous studies failed to detect PrPSc by immunohistochemical analysis of skeletal muscle from deer with natural or experimental CWD (5, 6). Since the time of disease onset is inversely proportional to prion dose (7), the longer incubation times of prions from skeletal muscle extracts compared to matched brain samples indicated that prion titers were lower in muscle than in CNS where infectivity titers are known to reach high levels. Although possible effects of CWD strains or strain mixtures on these incubation times cannot be excluded, the variable 360 to ~490 d incubation times suggested a range of prion titers in skeletal muscles of CWD-affected deer. Muscle prion titers at the high end of the range produced the fastest incubation times that were ~30% longer than the incubation times of prions from the CNS of the same animal. Since all mice in each inoculation group developed disease, prion titers in muscle samples producing the longest incubation times were higher than the end point of the bioassay, defined as the infectious dose at which half the inoculated mice develop disease. Studies are in progress to accurately assess prion titers.

While the risk of exposure to CWD infectivity following consumption of prions in muscle is mitigated by relatively inefficient prion transmission via the oral route (8), these results show that semitendinosus/semimembranosus muscle, which is likely to be consumed by humans, is a significant source of prion infectivity. Humans consuming or handling meat from CWD-infected deer are therefore at risk to prion exposure.

References and Notes

1. P. J. Bosque et al., Proc. Natl. Acad. Sci. U.S.A. 99, 3812 (2002).

2. S. R. Browning et al., J. Virol. 78, 13345 (2004).

3. A. Buschmann, M. H. Groschup, J. Infect. Dis. 192, 934 (2005).

4. O. Andreoletti et al., Nat. Med. 10, 591 (2004).

5. T. R. Spraker et al., Vet. Pathol. 39, 110 (2002).

6. A. N. Hamir, J. M. Miller, R. C. Cutlip, Vet. Pathol. 41, 78 (2004).

7. S. B. Prusiner et al., Biochemistry 21, 4883 (1980).

8. M. Prinz et al., Am. J. Pathol. 162, 1103 (2003).

9. This work was supported by grants from the U.S. Public Health Service 2RO1 NS040334-04 from the National Institute of Neurological Disorders and Stroke and N01-AI-25491 from the National Institute of Allergy and Infectious Diseases.

Supporting Online Material

Materials and Methods

Fig. S1

21 November 2005; accepted 13 January 2006 Published online 26 January 2006; 10.1126/science.1122864 Include this information when citing this paper.

Table 1. Incubation times following inoculation of Tg(CerPrP)1536 mice with prions from skeletal muscle and brain samples of CWD-affected deer.

Inocula Incubation time, mean d SEM (n/n0)*

Skeletal muscle Brain

CWD-affected deer

H92 360 2 d (6/6) 283 7 d (6/6)

33968 367 9 d (8/8) 278 11 d (6/6)

5941 427 18 d (7/7)

D10 483 8 d (8/8) 231 17 d (7/7)

D08 492 4 d (7/7)

Averages 426 d 264 d

Non-diseased deer

FPS 6.98 >523 d (0/6)

FPS 9.98 >454 d (0/7) >454 d (0/6)

None >490 d (0/6)

PBS >589 d (0/5)

*The number of mice developing prion disease divided by the original number of inoculated mice is shown in parentheses. Mice dying of intercurrent illnesses were excluded.

Supporting Online Material for

Prions in Skeletal Muscles of Deer with Chronic Wasting Disease

Rachel C. Angers, Shawn R. Browning, Tanya S. Seward, Christina J. Sigurdson,

Michael W. Miller, Edward A. Hoover, Glenn C. Telling

To whom correspondence should be addressed: E-mail:

Published 26 January 2006 on Science Express

DOI: 10.1126/science.1122864

This PDF file includes:

Materials and Methods

Fig. S1

Supporting Online Materials

Materials and Methods

Homogenates of semitendinosus/semimembranosus muscle (10% w/v in phosphate

buffered saline) were prepared from five emaciated and somnolent mule deer, naturally

infected with CWD at the Colorado Division of Wildlife, Wildlife Research Center.

These deer were identified as D10, D08, 33968, H92, and 5941. CWD infection was

confirmed in all cases by the presence of histologic lesions in the brain including

spongiform degeneration of the perikaryon, the immunohistochemical detection of

disease-associated PrP in brain and tonsil, or by immunoblotting of protease-resistant,

disease associated PrP (CerPrPSc). Semitendinosus/semimembranosus muscle was also

obtained from two asymptomatic, mock inoculated deer, referred to as FPS 6.68 and 9.98,

that originated from a CWD non-endemic area and which were held indoors at Colorado

State University from ten days of age. These control deer were confirmed negative for

CWD by histopathological and immunohistochemical analysis of brain tissue at autopsy.

The utmost care was taken to avoid inclusion of obvious nervous tissue when muscle

biopsies were prepared and to ensure that contamination of skeletal muscle samples with

CNS tissue did not occur. Fresh, single-use instruments were used to collect each sample

biopsy and a central piece from each sample was prepared with fresh, disposable

instruments to further isolate muscle tissue for inoculum preparation. Brain samples for

transmission were prepared separately from muscle as additional insurance against cross



Groups of anesthetized Tg(CerPrP)1536 mice were inoculated intracerebrally with 30 l

of 1 % skeletal muscle or brain extracts prepared in phosphate buffered saline (PBS).

Inoculated Tg(CerPrP) mice were diagnosed with prion disease following the progressive

development of at least three neurologic symptoms including truncal ataxia, 'plastic' tail,

loss of extensor reflex, difficultly righting, and slowed movement. The time from

inoculation to the onset of clinical signs is referred to as the incubation time.

For PrP analysis in brain extracts of Tg(CerPrP)1536 mice, 10 % homogenates prepared

in PBS were either untreated (-) or treated (+) with 40 g/ml proteinase K (PK) for one

hour at 37oC in the presence of 2% sarkosyl. Proteins were separated by sodium dodecyl

sulfate polyacrylamide gel electrophoresis, analyzed by immunoblotting using anti PrP

monoclonal antibody 6H4 (Prionics AG, Switzerland), incubated with appropriate

secondary antibody, developed using ECL-plus detection (Amersham), and analyzed

using a FLA-5000 scanner (Fuji).


Fig. S1

PrP in brain extracts from representative Tg(CerPrP)1536 mice receiving muscle or CNS

tissue inocula from CWD-affected or CWD-negative deer. Extracts were either treated

(+) or untreated (-) with proteinase K (PK) as indicated. The positions of protein

molecular weight markers at 21.3, 28.7, 33.5 kDa (from bottom to top) are shown to the

left of the immunoblot.


Wednesday, March 18, 2009

Noah's Ark Holding, LLC, Dawson, MN RECALL Elk products contain meat derived from an elk confirmed to have CWD NV, CA, TX, CO, NY, UT, FL, OK RECALLS AND FIELD CORRECTIONS: FOODS CLASS II

see full text ;

Wednesday, September 08, 2010


Prions in skeletal muscle

Patrick J. Bosque*,dagger ,Dagger , Chongsuk Ryou*, Glenn Telling*,§, David Peretz*,dagger , Giuseppe Legname*,dagger , Stephen J. DeArmond*,dagger ,¶, and Stanley B. Prusiner*,dagger ,,**

* Institute for Neurodegenerative Diseases and Departments of dagger Neurology, ¶ Pathology, and Biochemistry and Biophysics, University of California, San Francisco, CA 94143

Contributed by Stanley B. Prusiner, December 28, 2001

Considerable evidence argues that consumption of beef products from cattle infected with bovine spongiform encephalopathy (BSE) prions causes new variant Creutzfeldt-Jakob disease. In an effort to prevent new variant Creutzfeldt-Jakob disease, certain "specified offals," including neural and lymphatic tissues, thought to contain high titers of prions have been excluded from foods destined for human consumption [Phillips, N. A., Bridgeman, J. & Ferguson-Smith, M. (2000) in The BSE Inquiry (Stationery Office, London), Vol. 6, pp. 413-451]. Here we report that mouse skeletal muscle can propagate prions and accumulate substantial titers of these pathogens. We found both high prion titers and the disease-causing isoform of the prion protein (PrPSc) in the skeletal muscle of wild-type mice inoculated with either the Me7 o Rocky Mountain Laboratory strain of murine prions. Particular muscles accumulated distinct levels of PrPSc, with the highest levels observed in muscle from the hind limb. To determine whether prions are produced or merely accumulate intramuscularly, we established transgenic mice expressing either mouse or Syrian hamster PrP exclusively in muscle. Inoculating these mice intramuscularly with prions resulted in the formation of high titers of nascent prions in muscle. In contrast, inoculating mice in which PrP expression was targeted to hepatocytes resulted in low prion titers. Our data demonstrate that factors in addition to the amount of PrP expressed determine the tropism of prions for certain tissues. That some muscles are intrinsically capable of accumulating substantial titers of prions is of particular concern. Because significant dietary exposure to prions might occur through the consumption of meat, even if it is largely free of neural and lymphatic tissue, a comprehensive effort to map the distribution of prions in the muscle of infected livestock is needed. Furthermore, muscle may provide a readily biopsied tissue from which to diagnose prion disease in asymptomatic animals and even humans. Dagger Present address: Department of Medicine, Denver Health Medical Center, Denver, CO 80204.

§ Present address: Department of Microbiology and Immunology, University of Kentucky, Lexington, KY 40536-0230.

** To whom reprint requests should be addressed. E-mail:

Extraneural Pathologic Prion Protein in Sporadic Creutzfeldt-Jakob Disease

Markus Glatzel, M.D., Eugenio Abela, Manuela Maissen, M.S., and Adriano Aguzzi, M.D., Ph.D.



Using sensitive techniques, we identified extraneural deposition of PrPSc in spleen and muscle samples from approximately one third of patients who died with sporadic Creutzfeldt-Jakob disease. Extraneural PrPSc appears to correlate with a long duration of disease.

Thursday, November 18, 2010

Increased susceptibility of human-PrP transgenic mice to bovine spongiform encephalopathy following passage in sheep


A Typical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues

Caroline Lacroux,1 Leonor Orge,2,* Sylvie L. Benestad,3 Vincent Beringue,4 Claire Litaise,1 Stéphanie Simon,5 Hugh Simmons,6 Séverine Lugan,1 Fabien Corbière,1 Pierrette Costes,1 Nathalie Morel,5 François Schelcher1 and Olivier Andréoletti1,*

1UMR INRA ENVT 1225; Interactions Hôte Agent Pathogène; Ecole Nationale Vétérinaire de Toulouse; Toulouse, France; 2Laboratório Nacional de Investigação Veterinária; Estrada de Benfica, Lisboa, Portugal; 3National Veterinary Institute; Postboks; Oslo, Norway; 4INRA UR892; Virologie Immunologie Moléculaires; INRA; Jouy-en-Josas; 5CEA; Service de Pharmacologie et d’Immunoanalyse; IBiTec-S; DSV; CEA/Saclay; Gif sur Yvette cedex, France; 6VLA Weybridge; ASU; New Haw; Addlestone, Surrey UK

Key words: atypical, scrapie, peripheral tissues infectivity

Atypical/Nor98 scrapie was first identified in 1998 in Norway. It is now considered as a world widespread disease of small ruminants and currently represents more than the half of the detected TSE cases in Europe. Atypical/Nor98 scrapie agent biology and pathogenesis in its natural host is still poorly understood. Conversely to BSE and other small ruminants TSE agents, the ARR PrP allele does not provide protection against the disease, making the genetic selection policy inefficient to eradicate it. Based on the absence of detectable abnormal PrPSc in peripheral tissues the human and animal exposure risk to this specific TSE agent has been considered as low.

In the present study we first demonstrated that infectivity can accumulate, even if no abnormal PrP is detectable, in lymphoid tissues, nerves and muscles from natural and experimental Atypical/Nor98 scrapie cases. We furthermore demonstrated that, in comparison to other TSE agents, samples containing massive amount of Atypical/Nor98 scrapie infectivity can remain PrPSc negative. This feature probably impacts our perception of Atypical/Nor98 scrapie prevalence and spreading in field population. We finally evaluated, in both Atypical/Nor98 and classical scrapie cases, the infectivity loads accumulating in peripheral tissues that currently enter unrestricted into the food chain. The obtained results indicate that dietary exposure risk to small ruminants TSE agents is much higher than commonly believed. This conclusion raises the question of the potential capacities such TSE agents to transmit in other species.

PRION 2010 Meeting Report International Prion Congress: From agent to disease; September 8–11, 2010; Salzburg, Austria Volume 4, Issue 3 July/August/September 2010

Suspect symptoms

What if you can catch old-fashioned CJD by eating meat from a sheep infected with scrapie?

28 Mar 01

Like lambs to the slaughter 31 March 2001 by Debora MacKenzie Magazine issue 2284. Subscribe and get 4 free issues. FOUR years ago, Terry Singeltary watched his mother die horribly from a degenerative brain disease. Doctors told him it was Alzheimer's, but Singeltary was suspicious. The diagnosis didn't fit her violent symptoms, and he demanded an autopsy. It showed she had died of sporadic Creutzfeldt-Jakob disease.

Most doctors believe that sCJD is caused by a prion protein deforming by chance into a killer. But Singeltary thinks otherwise. He is one of a number of campaigners who say that some sCJD, like the variant CJD related to BSE, is caused by eating meat from infected animals. Their suspicions have focused on sheep carrying scrapie, a BSE-like disease that is widespread in flocks across Europe and North America.

Now scientists in France have stumbled across new evidence that adds weight to the campaigners' fears. To their complete surprise, the researchers found that one strain of scrapie causes the same brain damage in mice as sCJD.

"This means we cannot rule out that at least some sCJD may be caused by some strains of scrapie," says team member Jean-Philippe Deslys of the French Atomic Energy Commission's medical research laboratory in Fontenay-aux-Roses, south-west of Paris. Hans Kretschmar of the University of Göttingen, who coordinates CJD surveillance in Germany, is so concerned by the findings that he now wants to trawl back through past sCJD cases to see if any might have been caused by eating infected mutton or lamb.

Scrapie has been around for centuries and until now there has been no evidence that it poses a risk to human health. But if the French finding means that scrapie can cause sCJD in people, countries around the world may have overlooked a CJD crisis to rival that caused by BSE.

Deslys and colleagues were originally studying vCJD, not sCJD. They injected the brains of macaque monkeys with brain from BSE cattle, and from French and British vCJD patients. The brain damage and clinical symptoms in the monkeys were the same for all three. Mice injected with the original sets of brain tissue or with infected monkey brain also developed the same symptoms.

As a control experiment, the team also injected mice with brain tissue from people and animals with other prion diseases: a French case of sCJD; a French patient who caught sCJD from human-derived growth hormone; sheep with a French strain of scrapie; and mice carrying a prion derived from an American scrapie strain. As expected, they all affected the brain in a different way from BSE and vCJD. But while the American strain of scrapie caused different damage from sCJD, the French strain produced exactly the same pathology.

"The main evidence that scrapie does not affect humans has been epidemiology," says Moira Bruce of the neuropathogenesis unit of the Institute for Animal Health in Edinburgh, who was a member of the same team as Deslys. "You see about the same incidence of the disease everywhere, whether or not there are many sheep, and in countries such as New Zealand with no scrapie." In the only previous comparisons of sCJD and scrapie in mice, Bruce found they were dissimilar.

But there are more than 20 strains of scrapie, and six of sCJD. "You would not necessarily see a relationship between the two with epidemiology if only some strains affect only some people," says Deslys. Bruce is cautious about the mouse results, but agrees they require further investigation. Other trials of scrapie and sCJD in mice, she says, are in progress.

People can have three different genetic variations of the human prion protein, and each type of protein can fold up two different ways. Kretschmar has found that these six combinations correspond to six clinical types of sCJD: each type of normal prion produces a particular pathology when it spontaneously deforms to produce sCJD.

But if these proteins deform because of infection with a disease-causing prion, the relationship between pathology and prion type should be different, as it is in vCJD. "If we look at brain samples from sporadic CJD cases and find some that do not fit the pattern," says Kretschmar, "that could mean they were caused by infection."

There are 250 deaths per year from sCJD in the US, and a similar incidence elsewhere. Singeltary and other US activists think that some of these people died after eating contaminated meat or "nutritional" pills containing dried animal brain. Governments will have a hard time facing activists like Singeltary if it turns out that some sCJD isn't as spontaneous as doctors have insisted.

Deslys's work on macaques also provides further proof that the human disease vCJD is caused by BSE. And the experiments showed that vCJD is much more virulent to primates than BSE, even when injected into the bloodstream rather than the brain. This, says Deslys, means that there is an even bigger risk than we thought that vCJD can be passed from one patient to another through contaminated blood transfusions and surgical instruments.

EMBO reports AOP Published online: 11 April 2003

Widespread PrPSc accumulation in muscles of hamsters orally infected with scrapie

Achim Thomzig, Christine Kratzel, Gudrun Lenz, Dominique Kr'¼ger & Michael Beekes Robert Koch-Institut, P26, Nordufer 20, D-13353 Berlin, Germany

Received 13 February 2003; Accepted 13 March 2003; Published online 11 April 2003.

Abstract :

Scrapie, bovine spongiform encephalopathy and chronic wasting disease are orally communicable, transmissible spongiform encephalopathies (TSEs). As zoonotic transmissions of TSE agents may pose a risk to human health, the identification of reservoirs for infectivity in animal tissues and their exclusion from human consumption has become a matter of great importance for consumer protection. In this study, a variety of muscles from hamsters that were orally challenged with scrapie was screened for the presence of a molecular marker for TSE infection, PrPSc (the pathological isoform of the prion protein PrP). Sensitive western blotting revealed consistent PrPSc accumulation in skeletal muscles from forelimb and hindlimb, head, back and shoulder, and in tongue. Previously, our animal model has provided substantial baseline information about the peripheral routing of infection in naturally occurring and orally acquired ruminant TSEs. Therefore, the findings described here highlight further the necessity to investigate thoroughly whether muscles of TSE-infected sheep, cattle, elk and deer contain infectious agents.

Detection of Prion Infectivity in Fat Tissues of Scrapie-Infected Mice

Brent Race1#, Kimberly Meade-White1#, Michael B. A. Oldstone2, Richard Race1, Bruce Chesebro1*

1 Laboratory of Persistent Virus Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America, 2 Department of Immunology and Microbial Science, The Scripps Research Institute, LaJolla, California, United States of America


Distribution of prion infectivity in organs and tissues is important in understanding prion disease pathogenesis and designing strategies to prevent prion infection in animals and humans. Transmission of prion disease from cattle to humans resulted in banning human consumption of ruminant nervous system and certain other tissues. In the present study, we surveyed tissue distribution of prion infectivity in mice with prion disease. We show for the first time detection of infectivity in white and brown fat. Since high amounts of ruminant fat are consumed by humans and also incorporated into animal feed, fat-containing tissues may pose a previously unappreciated hazard for spread of prion infection.

Author Summary

Prion diseases, also known as transmissible spongiform encephalopathies, are infectious progressive fatal neurodegenerative diseases which affect humans as well as wild and domestic animals. Distribution of prion infectivity in organs and tissues is important in understanding prion disease pathogenesis and designing strategies to prevent prion infection in animals and humans. We show for the first time the presence of prion infectivity in white fat and brown fat tissues of mice with prion disease. Our results suggest that fat tissues of domestic or wild animals infected with prions may pose an unappreciated hazard for spread of infection to humans or domestic animals. The presence of prion infectivity in fat suggests that additional consideration may be required to eliminate from the food chain any fat from ruminants suspected of exposure to or infection with prions. Thus, this finding has implications for public health, food safety, and prion disease prevention strategies.

Citation: Race B, Meade-White K, Oldstone MBA, Race R, Chesebro B (2008) Detection of Prion Infectivity in Fat Tissues of Scrapie-Infected Mice. PLoS Pathog 4(12): e1000232. doi:10.1371/journal.ppat.1000232

Editor: Neil Mabbott, University of Edinburgh, United Kingdom

Received: August 12, 2008; Accepted: November 5, 2008; Published: December 5, 2008

This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

Funding: This research was supported in part by the Intramural Research Program of the NIH, NIAID. MBAO was funded through NIA grant AG04032.

Competing interests: The authors have declared that no competing interests exist.

* E-mail:

# These authors contributed equally to this work.



Discussion The present results indicate that white fat and brown fat are possible tissue sources of prion infectivity which might play a role in transmission of prion disease. In vivo brown fat has a limited distribution, usually found in young animals in the intrascapular region and around various organs such as heart and kidney. In adult ruminants brown fat is minimal. Therefore, brown fat from infected animals is unlikely to be consumed by humans in large amounts. In contrast, humans often consume large amounts of ruminant white fat. In premium cuts of meat containing mostly skeletal muscle, white fat is often intertwined with muscle cells, and it is impossible to separate the two cell types. However, white fat, free of muscle, is found in subcutaneous, retroperitoneal, intraperitoneal, perirenal and other regions. Such fat is used in many processed meat products such as sausages and canned meats, and is also used in animal feeds. Our present data show clearly that fat in the absence of muscle has significant infectivity titers, which are similar to titers in muscle containing fat (Table 1). Since our skeletal muscle samples are unavoidably contaminated by white fat, it is possible that fat might be a contributor to the infectivity found in muscle. In support of this possibility we found PrPres detectable by IHC at high levels in white fat associated with skeletal muscle in some tg44 mice (Figure 4). In contrast, other groups did not mention seeing PrPres in muscle-associated fat tissue in animals where myocytes themselves were seen to be positive by IHC [13]-[20].


It is unclear why there is accumulation of PrPres and infectivity in adipose tissues. One possibility might be the high level of innervation by the autonomic nervous system in both brown and white fat. In WT mice, nerves should express cell membrane anchored PrPC (PrPsen). Sympathetic nerves have been previously implicated in transfer of scrapie infectivity from spleen to brain in mice [29], and they might also play a role in infection of fat in WT mice. In tg44 mice the mechanism of fat infection is likely to be different as there is no anchored PrPsen on the nerves. We currently postulate a role for connective tissue structures in this process.

Infectivity in fat might also contribute to environmental contamination following the death of prion infected animals. Although infectivity titers are lower in fat and muscle than in CNS, the large mass of fat and muscle makes the total infectivity from these sources similar. Furthermore, fat and muscle are readily accessible to the environment after death, whereas the CNS is highly confined in skull and vertebral column. These factors might increase the importance of fat and muscle as sources of spread of prion disease among animals.

The low or negative plasma titers found in tg44 and WT mice indicate that residual plasma cannot account for the high infectivity levels seen in fat and other tissues (Table 1). However, low levels of plasma or blood-borne infectivity might still be a mechanism for spread of infectivity among tissues in tg44 mice and possibly also WT mice. Similarly transmission of low level blood prion infectivity has been documented by blood transfusion in BSE-infected sheep [30], and also accounts for some rare cases of human variant CJD [31],[32].

In this study extraneural infection was much higher in tg44 mice expressing anchorless PrP than in WT mice. The explanation of this finding is unclear. Possibly soluble anchorless PrP facilitates spread of infection from CNS to extraneural sites by blood, lymph or nerve-mediated transport. Alternatively, the long asymptomatic survival time of tg44 mice might also contribute to high level extraneural infection. This could also be a factor in many animal prion diseases where the time course is long, i.e. 2-5 years or more, and might allow higher extraneural infectivity in fat tissues [7], [33]-[35].

The present data using a mouse model shows the proof of principle that brown and white fat tissues can be important sites of prion agent deposition. It will be important to extend these studies in the future to prion infected large animals such as cattle, sheep and cervids where there may be greater potential for contamination of human or domestic animal food chains. We are currently doing this experiment with fat from CWD deer; however, it will require an additional year to gather this data, and this result is therefore beyond the scope of the present paper. Such studies may be difficult because of the lower titers seen in these large animals compared to rodent scrapie models. For example, we often detect titers of 9-10 logID50/gram of mouse brain, whereas in brain from BSE cattle [8], and scrapie sheep [4] titers reported are 7-8 logID50/gram. We are finding similar low titers in CWD cervid brain in our deer PrP transgenic mice (unpublished data). These results could indicate either that the amount of prion agent present in ruminant brain is lower than in mice and hamsters or that the cattle, sheep and deer PrP transgenic mice used for infectivity assays are less sensitive than the WT mice or hamster PrP transgenic mice used for rodent scrapie. In either case this might affect ability to detect infectivity in fat of these important large animal models.

Materials and Methods

snip...full text ;

Wednesday, November 17, 2010

CWD Update 98 November 10, 2010

Research Project: Study of Atypical Bse Location: Virus and Prion Diseases of Livestock

Project Number: 3625-32000-086-05 Project Type: Specific Cooperative Agreement

Start Date: Sep 15, 2004 End Date: Sep 14, 2009

Objective: The objective of this cooperative research project with Dr. Maria Caramelli from the Italian BSE Reference Laboratory in Turin, Italy, is to conduct comparative studies with the U.S. bovine spongiform encephalopathy (BSE) isolate and the atypical BSE isolates identified in Italy. The studies will cover the following areas: 1. Evaluation of present diagnostics tools used in the U.S. for the detection of atypical BSE cases. 2. Molecular comparison of the U.S. BSE isolate and other typical BSE isolates with atypical BSE cases. 3. Studies on transmissibility and tissue distribution of atypical BSE isolates in cattle and other species.

Approach: This project will be done as a Specific Cooperative Agreement with the Italian BSE Reference Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, in Turin, Italy. It is essential for the U.S. BSE surveillance program to analyze the effectiveness of the U.S diagnostic tools for detection of atypical cases of BSE. Molecular comparisons of the U.S. BSE isolate with atypical BSE isolates will provide further characterization of the U.S. BSE isolate. Transmission studies are already underway using brain homogenates from atypical BSE cases into mice, cattle and sheep. It will be critical to see whether the atypical BSE isolates behave similarly to typical BSE isolates in terms of transmissibility and disease pathogenesis. If transmission occurs, tissue distribution comparisons will be made between cattle infected with the atypical BSE isolate and the U.S. BSE isolate. Differences in tissue distribution could require new regulations regarding specific risk material (SRM) removal.


Date: September 6, 2006 at 7:58 am PST PRODUCT

a) EVSRC Custom dairy feed, Recall # V-130-6;

b) Performance Chick Starter, Recall # V-131-6;

c) Performance Quail Grower, Recall # V-132-6;

d) Performance Pheasant Finisher, Recall # V-133-6.

CODE None RECALLING FIRM/MANUFACTURER Donaldson & Hasenbein/dba J&R Feed Service, Inc., Cullman, AL, by telephone on June 23, 2006 and by letter dated July 19, 2006. Firm initiated recall is complete.


Dairy and poultry feeds were possibly contaminated with ruminant based protein.




PRODUCT Bulk custom dairy pre-mixes,

Recall # V-120-6 CODE None RECALLING FIRM/MANUFACTURER Ware Milling Inc., Houston, MS, by telephone on June 23, 2006. Firm initiated recall is complete. REASON Possible contamination of dairy animal feeds with ruminant derived meat and bone meal.





a) Tucker Milling, LLC Tm 32% Sinking Fish Grower, #2680-Pellet, 50 lb. bags, Recall # V-121-6;

b) Tucker Milling, LLC #31120, Game Bird Breeder Pellet, 50 lb. bags, Recall # V-122-6;

c) Tucker Milling, LLC #31232 Game Bird Grower, 50 lb. bags, Recall # V-123-6;

d) Tucker Milling, LLC 31227-Crumble, Game Bird Starter, BMD Medicated, 50 lb bags, Recall # V-124-6;

e) Tucker Milling, LLC #31120, Game Bird Breeder, 50 lb bags, Recall # V-125-6;

f) Tucker Milling, LLC #30230, 30 % Turkey Starter, 50 lb bags, Recall # V-126-6;

g) Tucker Milling, LLC #30116, TM Broiler Finisher, 50 lb bags, Recall # V-127-6

CODE All products manufactured from 02/01/2005 until 06/20/2006 RECALLING FIRM/MANUFACTURER Recalling Firm: Tucker Milling LLC, Guntersville, AL, by telephone and visit on June 20, 2006, and by letter on June 23, 2006. Manufacturer: H. J. Baker and Brothers Inc., Stamford, CT. Firm initiated recall is ongoing.

REASON Poultry and fish feeds which were possibly contaminated with ruminant based protein were not labeled as "Do not feed to ruminants".





Subject: MAD COW FEED RECALL AL AND FL VOLUME OF PRODUCT IN COMMERCE 125 TONS Products manufactured from 02/01/2005 until 06/06/2006

Date: August 6, 2006 at 6:16 pm PST PRODUCT

a) CO-OP 32% Sinking Catfish, Recall # V-100-6;

b) Performance Sheep Pell W/Decox/A/N, medicated, net wt. 50 lbs, Recall # V-101-6;

c) Pro 40% Swine Conc Meal -- 50 lb, Recall # V-102-6;

d) CO-OP 32% Sinking Catfish Food Medicated, Recall # V-103-6;

e) "Big Jim's" BBB Deer Ration, Big Buck Blend, Recall # V-104-6;

f) CO-OP 40% Hog Supplement Medicated Pelleted, Tylosin 100 grams/ton, 50 lb. bag, Recall # V-105-6;

g) Pig Starter Pell II, 18% W/MCDX Medicated 282020, Carbadox -- 0.0055%, Recall # V-106-6;

h) CO-OP STARTER-GROWER CRUMBLES, Complete Feed for Chickens from Hatch to 20 Weeks, Medicated, Bacitracin Methylene Disalicylate, 25 and 50 Lbs, Recall # V-107-6;

i) CO-OP LAYING PELLETS, Complete Feed for Laying Chickens, Recall # 108-6;

j) CO-OP LAYING CRUMBLES, Recall # V-109-6;

k) CO-OP QUAIL FLIGHT CONDITIONER MEDICATED, net wt 50 Lbs, Recall # V-110-6;

l) CO-OP QUAIL STARTER MEDICATED, Net Wt. 50 Lbs, Recall # V-111-6;

m) CO-OP QUAIL GROWER MEDICATED, 50 Lbs, Recall # V-112-6 CODE

Product manufactured from 02/01/2005 until 06/06/2006

RECALLING FIRM/MANUFACTURER Alabama Farmers Cooperative, Inc., Decatur, AL, by telephone, fax, email and visit on June 9, 2006. FDA initiated recall is complete.

REASON Animal and fish feeds which were possibly contaminated with ruminant based protein not labeled as "Do not feed to ruminants".









a) PRO-LAK, bulk weight, Protein Concentrate for Lactating Dairy Animals, Recall # V-079-6;

b) ProAmino II, FOR PREFRESH AND LACTATING COWS, net weight 50lb (22.6 kg), Recall # V-080-6;


d) Feather Meal, Recall # V-082-6 CODE

a) Bulk

b) None

c) Bulk

d) Bulk

RECALLING FIRM/MANUFACTURER H. J. Baker & Bro., Inc., Albertville, AL, by telephone on June 15, 2006 and by press release on June 16, 2006. Firm initiated recall is ongoing.


Possible contamination of animal feeds with ruminent derived meat and bone meal.






Date: March 21, 2007 at 2:27 pm PST




Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried, Recall # V-024-2007


Cattle feed delivered between 01/12/2007 and 01/26/2007


Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.

Firm initiated recall is ongoing.


Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement.


42,090 lbs.







The firm does not utilize a code - only shipping documentation with commodity and weights identified.


Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007. Firm initiated recall is complete.


Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.


9,997,976 lbs.


ID and NV


Saturday, November 6, 2010

TAFS1 Position Paper on Position Paper on Relaxation of the Feed Ban in the EU Berne, 2010 TAFS


DER SPIEGEL (9/2001) - 24.02.2001 (9397 Zeichen) USA: Loch in der Mauer Die BSE-Angst erreicht Amerika: Trotz strikter Auflagen gelangte in Texas verbotenes Tiermehl ins Rinderfutter - die Kontrollen der Aufsichtsbehördensind lax.Link auf diesen Artikel im Archiv:

"Löcher wie in einem Schweizer Käse" hat auch Terry Singeltary im Regelwerk der FDA ausgemacht. Der Texaner kam auf einem tragischen Umweg zu dem Thema: Nachdem seine Mutter 1997 binnen weniger Wochen an der Creutzfeldt-Jakob-Krankheit gestorben war, versuchte er, die Ursachen der Infektion aufzuspüren. Er klagte auf die Herausgabe von Regierungsdokumenten und arbeitete sich durch Fachliteratur; heute ist er überzeugt, dass seine Mutter durch die stetige Einnahme von angeblich kräftigenden Mitteln erkrankte, in denen - völlig legal - Anteile aus Rinderprodukten enthalten sind.

Von der Fachwelt wurde Singeltary lange als versponnener Außenseiter belächelt. Doch mittlerweile sorgen sich auch Experten, dass ausgerechnet diese verschreibungsfreien Wundercocktails zur Stärkung von Intelligenz, Immunsystem oder Libido von den Importbeschränkungen ausgenommen sind. Dabei enthalten die Pillen und Ampullen, die in Supermärkten verkauft werden, exotische Mixturen aus Rinderaugen; dazu Extrakte von Hypophyse oder Kälberföten, Prostata, Lymphknoten und gefriergetrocknetem Schweinemagen. In die USA hereingelassen werden auch Blut, Fett, Gelatine und Samen. Diese Stoffe tauchen noch immer in US-Produkten auf, inklusive Medizin und Kosmetika. Selbst in Impfstoffen waren möglicherweise gefährliche Rinderprodukte enthalten. Zwar fordert die FDA schon seit acht Jahren die US-Pharmaindustrie auf, keine Stoffe aus Ländern zu benutzen, in denen die Gefahr einer BSE-Infizierung besteht. Aber erst kürzlich verpflichteten sich fünf Unternehmen, darunter Branchenführer wie GlaxoSmithKline, Aventis und American Home Products, ihre Seren nur noch aus unverdächtigem Material herzustellen.

"Its as full of holes as Swiss Cheese" says Terry Singeltary of the FDA regulations. ...


Molecular characterization of BSE in Canada

Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre, Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of Calgary, Canada

Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle.

Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.

Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal- specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. It also suggests a similar cause or source for atypical BSE in these countries.


Atypical transmissible spongiform encephalopathies in ruminants: a challenge for disease surveillance and control

Torsten Seuberlich1, Dagmar Heim and Andreas Zurbriggen Correspondence: 1Corresponding Author: Torsten Seuberlich, NeuroCentre, National and OIE Reference Laboratories for BSE and Scrapie, DCR-VPH, Bremgartenstrasse 109a, CH-3001 Berne, Switzerland.

Since 1987, when bovine spongiform encephalopathy (BSE) emerged as a novel disease in cattle, enormous efforts were undertaken to monitor and control the disease in ruminants worldwide. The driving force was its high economic impact, which resulted from trade restrictions and the loss of consumer confidence in beef products, the latter because BSE turned out to be a fatal zoonosis, causing variant Creutzfeldt–Jakob disease in human beings. The ban on meat and bone meal in livestock feed and the removal of specified risk materials from the food chain were the main measures to successfully prevent infection in cattle and to protect human beings from BSE exposure. However, although BSE is now under control, previously unknown, so-called atypical transmissible spongiform encephalopathies (TSEs) in cattle and small ruminants have been identified by enhanced disease surveillance. This report briefly reviews and summarizes the current level of knowledge on the spectrum of TSEs in cattle and small ruminants and addresses the question of the extent to which such atypical TSEs have an effect on disease surveillance and control strategies.

Key Words: Atypical • bovine spongiform encephalopathy • cattle • disease control • prion • ruminants • scrapie • transmissible spongiform encephalopathies

Sunday, April 18, 2010


Friday, August 27, 2010


Sunday, October 3, 2010

Scrapie, Nor-98 atypical Scrapie, and BSE in sheep and goats North America, who's looking ?




4:10-cr-03119-RGK -CRZ Doc # 1 Filed: 11/16/10 Page 1 of 4 - Page ID #1




10 NOV 16 PM 4:16










18 U.S.C. § 1001

18 U.S.C. § 1341

The Grand Jury charges that:


At all times material to this Indictment: Thursday, November 18, 2010

snip...end...please see full text ;


Wednesday, November 17, 2010


Tuesday, November 02, 2010


The information contained herein should not be disseminated further except on the basis of "NEED TO KNOW"

BSE - ATYPICAL LESION DISTRIBUTION (RBSE 92-21367) statutory (obex only) diagnostic criteria CVL 1992

Seven main threats for the future linked to prions

The NeuroPrion network has identified seven main threats for the future linked to prions.

First threat

The TSE road map defining the evolution of European policy for protection against prion diseases is based on a certain numbers of hypotheses some of which may turn out to be erroneous. In particular, a form of BSE (called atypical Bovine Spongiform Encephalopathy), recently identified by systematic testing in aged cattle without clinical signs, may be the origin of classical BSE and thus potentially constitute a reservoir, which may be impossible to eradicate if a sporadic origin is confirmed.

*** Also, a link is suspected between atypical BSE and some apparently sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases constitute an unforeseen first threat that could sharply modify the European approach to prion diseases...

Rural and Regional Affairs and Transport References Committee The possible impacts and consequences for public health, trade and agriculture of the Government's decision to relax import restrictions on beef Final report June 2010

2.65 At its hearing on 14 May 2010, the committee heard evidence from Dr Alan Fahey who has recently submitted a thesis on the clinical neuropsychiatric, epidemiological and diagnostic features of Creutzfeldt-Jakob disease.48 Dr Fahey told the committee of his concerns regarding the lengthy incubation period for transmissible spongiform encephalopathies, the inadequacy of current tests and the limited nature of our current understanding of this group of diseases.49

2.66 Dr Fahey also told the committee that in the last two years a link has been established between forms of atypical CJD and atypical BSE. Dr Fahey said that: They now believe that those atypical BSEs overseas are in fact causing sporadic Creutzfeldt-Jakob disease. They were not sure if it was due to mad sheep disease or a different form. If you look in the textbooks it looks like this is just arising by itself. But in my research I have a summary of a document which states that there has never been any proof that sporadic Creutzfeldt-Jakob disease has arisen de novo-has arisen of itself. There is no proof of that. The recent research is that in fact it is due to atypical forms of mad cow disease which have been found across Europe, have been found in America and have been found in Asia. These atypical forms of mad cow disease typically have even longer incubation periods than the classical mad cow disease.50

Monday, August 9, 2010

Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein or just more PRIONBALONEY ?

Monday, May 19, 2008


PLEASE SEE the dramatic increase in sporadic CJD cases in documented BSE countries, then think, BSE can propagate as nvCJD and sporadic CJD in the lab ;


Australia Austria Canada France Germany Italy Netherlands Slovakia Spain Switzerland UK


5 Includes 16 cases in which the diagnosis is pending, and 18 inconclusive cases;

6 Includes 21 (19 from 2010) cases with type determination pending in which the diagnosis of vCJD has been excluded.



Monday, August 9, 2010

National Prion Disease Pathology Surveillance Center Cases Examined (July 31, 2010) Year Total Referrals2 Prion Disease Sporadic Familial Iatrogenic vCJD

1996 & earlier 51 33 28 5 0 0

1997 114 68 59 9 0 0

1998 88 52 44 7 1 0

1999 120 72 64 8 0 0

2000 146 103 89 14 0 0

2001 209 119 109 10 0 0

2002 248 149 125 22 2 0

2003 274 176 137 39 0 0

2004 325 186 164 21 0 1(3)

2005 344 194 157 36 1 0

2006 383 197 166 29 0 2(4)

2007 377 214 187 27 0 0

2008 394 231 204 25 0 0

2009 425 259 216 43 0 0

2010 204 124 85 20 0 0

TOTAL 3702(5) 2177(6) 1834 315 4 3

1 Listed based on the year of death or, if not available, on year of referral;

2 Cases with suspected prion disease for which brain tissue and/or blood (in familial cases) were submitted;

3 Disease acquired in the United Kingdom;

4 Disease was acquired in the United Kingdom in one case and in Saudi Arabia in the other case;

5 Includes 16 cases in which the diagnosis is pending, and 18 inconclusive cases;

6 Includes 21 (19 from 2010) cases with type determination pending in which the diagnosis of vCJD has been excluded.

Monday, August 9, 2010

National Prion Disease Pathology Surveillance Center Cases Examined (July 31, 2010)

(please watch and listen to the video and the scientist speaking about atypical BSE and sporadic CJD and listen to Professor Aguzzi)

Atypical BSE in Cattle

BSE has been linked to the human disease variant Creutzfeldt Jakob Disease (vCJD). The known exposure pathways for humans contracting vCJD are through the consumption of beef and beef products contaminated by the BSE agent and through blood transfusions. However, recent scientific evidence suggests that the BSE agent may play a role in the development of other forms of human prion diseases as well. These studies suggest that classical type of BSE may cause type 2 sporadic CJD and that H-type atypical BSE is connected with a familial form of CJD.

To date the OIE/WAHO assumes that the human and animal health standards set out in the BSE chapter for classical BSE (C-Type) applies to all forms of BSE which include the H-type and L-type atypical forms. This assumption is scientifically not completely justified and accumulating evidence suggests that this may in fact not be the case. Molecular characterization and the spatial distribution pattern of histopathologic lesions and immunohistochemistry (IHC) signals are used to identify and characterize atypical BSE. Both the L-type and H-type atypical cases display significant differences in the conformation and spatial accumulation of the disease associated prion protein (PrPSc) in brains of afflicted cattle. Transmission studies in bovine transgenic and wild type mouse models support that the atypical BSE types might be unique strains because they have different incubation times and lesion profiles when compared to C-type BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian hamster the resulting molecular fingerprint had changed, either in the first or a subsequent passage, from L-type into C-type BSE. In addition, non-human primates are specifically susceptible for atypical BSE as demonstrated by an approximately 50% shortened incubation time for L-type BSE as compared to C-type. Considering the current scientific information available, it cannot be assumed that these different BSE types pose the same human health risks as C-type BSE or that these risks are mitigated by the same protective measures.

snip...see full text ;

14th ICID International Scientific Exchange Brochure -

Final Abstract Number: ISE.114

Session: International Scientific Exchange

Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009

T. Singeltary

Bacliff, TX, USA


An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.


12 years independent research of available data


I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.


I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.

page 114 ;

The EMBO Journal (2002) 21, 6358 - 6366 doi:10.1093/emboj/cdf653

BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein

Emmanuel A. Asante1, Jacqueline M. Linehan1, Melanie Desbruslais1, Susan Joiner1, Ian Gowland1, Andrew L. Wood1, Julie Welch1, Andrew F. Hill1, Sarah E. Lloyd1, Jonathan D.F. Wadsworth1 and John Collinge1

1.MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College, Queen Square, London WC1N 3BG, UK Correspondence to:

John Collinge, E-mail:

Received 1 August 2002; Accepted 17 October 2002; Revised 24 September 2002



Variant Creutzfeldt–Jakob disease (vCJD) has been recognized to date only in individuals homozygous for methionine at PRNP codon 129. Here we show that transgenic mice expressing human PrP methionine 129, inoculated with either bovine spongiform encephalopathy (BSE) or variant CJD prions, may develop the neuropathological and molecular phenotype of vCJD, consistent with these diseases being caused by the same prion strain. Surprisingly, however, BSE transmission to these transgenic mice, in addition to producing a vCJD-like phenotype, can also result in a distinct molecular phenotype that is indistinguishable from that of sporadic CJD with PrPSc type 2. These data suggest that more than one BSE-derived prion strain might infect humans; it is therefore possible that some patients with a phenotype consistent with sporadic CJD may have a disease arising from BSE exposure.

Keywords:BSE, Creutzfeldt–Jakob disease, prion, transgenic

BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein

Emmanuel A. Asante, Jacqueline M. Linehan, Melanie Desbruslais, Susan Joiner, Ian Gowland, Andrew L. Wood, Julie Welch, Andrew F. Hill, Sarah E. Lloyd, Jonathan D.F. Wadsworth, and John Collinge1 MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College, Queen Square, London WC1N 3BG, UK 1Corresponding author e-mail: August 1, 2002; Revised September 24, 2002; Accepted October 17, 2002.

5 Includes 28 cases in which the diagnosis is pending, and 17 inconclusive cases;

6 Includes 28 (24 from 2010) cases with type determination pending in which the diagnosis of vCJD has been excluded


" Up until about 6 years ago, the pt worked at Tyson foods where she worked on the assembly line, slaughtering cattle and preparing them for packaging. She was exposed to brain and spinal cord matter when she would euthanize the cattle. "

According to the World Health Organisation, the future public health threat of vCJD in the UK and Europe and potentially the rest of the world is of concern and currently unquantifiable. However, the possibility of a significant and geographically diverse vCJD epidemic occurring over the next few decades cannot be dismissed.

The key word here is diverse. What does diverse mean?

If USA scrapie transmitted to USA bovine does not produce pathology as the UK c-BSE, then why would CJD from there look like UK vCJD?"

SEE FULL TEXT ;,F2400_P1001_PUB_MAIL_ID:1000,82101

Saturday, January 16, 2010

Evidence For CJD TSE Transmission Via Endoscopes 1-24-3

re-Singeltary to Bramble et al Evidence For CJD/TSE Transmission Via Endoscopes

From Terry S. Singletary, Sr 1-24-3

Thursday, July 08, 2010

Nosocomial transmission of sporadic Creutzfeldt-Jakob disease: results from a risk-based assessment of surgical interventions Public release date: 8-Jul-2010

Friday, August 13, 2010

Creutzfeldt-Jakob disease (CJD) biannual update 13 August 2010 UK Iatrogenic CJD Incidents Report

Tuesday, September 14, 2010

Transmissible Spongiform Encephalopathies Advisory Committee; Notice of Meeting October 28 and 29, 2010 (COMMENT SUBMISSION)

Thursday, July 08, 2010


Friday, February 05, 2010

New Variant Creutzfelt Jakob Disease case reports United States 2010 A Review

Manuscript Draft Manuscript Number: Title: HUMAN and ANIMAL TSE Classifications i.e. mad cow disease and the UKBSEnvCJD only theory Article Type: Personal View Corresponding Author: Mr. Terry S. Singeltary, Corresponding Author's Institution: na First Author: Terry S Singeltary, none Order of Authors: Terry S Singeltary, none; Terry S. Singeltary

Abstract: TSEs have been rampant in the USA for decades in many species, and they all have been rendered and fed back to animals for human/animal consumption. I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2007.

Saturday, June 13, 2009

Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States 2003 revisited 2009

Saturday, January 2, 2010

Human Prion Diseases in the United States January 1, 2010 ***FINAL***

my comments to PLosone here ;


BMJ 1999;319:1312 (Published 13 November 1999)

Re: vCJD in the USA * BSE in U.S. 15 November 1999

Terry S Singeltary


It's their move, it's CHECK, but once CHECKMATE has been called, how many thousands or millions, will be at risk or infected or even dead. You can't play around with these TSE's. I cannot stress that enough. They are only looking at body bags, and the fact the count is so low. But, then you have to look at the fact it is not a reportable disease in most states, mis-diagnosis, no autopsies performed. The fact that their one-in-a- million theory is a crude survey done about 5 years ago, that's a joke, under the above circumstances. A bad joke indeed........



BMJ 2000;320:8 doi:10.1136/bmj.320.7226.8/b (Published 1 January 2000)

U.S. Scientist should be concerned with a CJD epidemic in the U.S., as well...

2 January 2000

Terry S Singeltary

In reading your short article about 'Scientist warn of CJD epidemic' news in brief Jan. 1, 2000. I find the findings in the PNAS old news, made famous again. Why is the U.S. still sitting on their butts, ignoring the facts? We have the beginning of a CJD epidemic in the U.S., and the U.S. Gov. is doing everything in it's power to conceal it.

The exact same recipe for B.S.E. existed in the U.S. for years and years. In reading over the Qualitative Analysis of BSE Risk Factors-1, this is a 25 page report by the USDA:APHIS:VS. It could have been done in one page. The first page, fourth paragraph says it all;

"Similarities exist in the two countries usage of continuous rendering technology and the lack of usage of solvents, however, large differences still remain with other risk factors which greatly reduce the potential risk at the national level."

Then, the next 24 pages tries to down-play the high risks of B.S.E. in the U.S., with nothing more than the cattle to sheep ratio count, and the geographical locations of herds and flocks. That's all the evidence they can come up with, in the next 24 pages.

Something else I find odd, page 16;

"In the United Kingdom there is much concern for a specific continuous rendering technology which uses lower temperatures and accounts for 25 percent of total output. This technology was _originally_ designed and imported from the United States. However, the specific application in the production process is _believed_ to be different in the two countries."

A few more factors to consider, page 15;

snip...see full text ;

Vol. 285 No. 6, February 14, 2001


Diagnosis and Reporting of Creutzfeldt-Jakob Disease

To the Editor: In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.

Terry S. Singeltary, Sr Bacliff, Tex


doi: 10.1212/01.WNL.0000036913.87823.D6 Neurology January 28, 2003 vol. 60 no. 2 176-181

MARCH 26, 2003

RE-Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States

Email Terry S. Singeltary:

[log in to unmask]

I lost my mother to hvCJD (Heidenhain Variant CJD). I would like to comment on the CDC's attempts to monitor the occurrence of emerging forms of CJD. Asante, Collinge et al [1] have reported that BSE transmission to the 129-methionine genotype can lead to an alternate phenotype that is indistinguishable from type 2 PrPSc, the commonest sporadic CJD. However, CJD and all human TSEs are not reportable nationally. CJD and all human TSEs must be made reportable in every state and internationally. I hope that the CDC does not continue to expect us to still believe that the 85%+ of all CJD cases which are sporadic are all spontaneous, without route/source. We have many TSEs in the USA in both animal and man. CWD in deer/elk is spreading rapidly and CWD does transmit to mink, ferret, cattle, and squirrel monkey by intracerebral inoculation. With the known incubation periods in other TSEs, oral transmission studies of CWD may take much longer. Every victim/family of CJD/TSEs should be asked about route and source of this agent. To prolong this will only spread the agent and needlessly expose others. In light of the findings of Asante and Collinge et al, there should be drastic measures to safeguard the medical and surgical arena from sporadic CJDs and all human TSEs. I only ponder how many sporadic CJDs in the USA are type 2 PrPSc?


The Lancet Infectious Diseases, Volume 3, Issue 8, Page 463, August 2003

doi:10.1016/S1473-3099(03)00715-1Cite or Link Using DOI

Tracking spongiform encephalopathies in North America

Xavier Bosch

"My name is Terry S Singeltary Sr, and I live in Bacliff, Texas. I lost my mom to hvCJD (Heidenhain variant CJD) and have been searching for answers ever since. What I have found is that we have not been told the truth. CWD in deer and elk is a small portion of a much bigger problem." 49-year-old Singeltary is one of a number of people who have remained largely unsatisfied after being told that a close relative died from a rapidly progressive dementia compatible with spontaneous Creutzfeldt-Jakob disease (CJD). So he decided to gather hundreds of documents on transmissible spongiform encephalopathies (TSE) and realised that if Britons could get variant CJD from bovine spongiform encephalopathy (BSE), Americans might get a similar disorder from chronic wasting disease (CWD)-the relative of mad cow disease seen among deer and elk in the USA. Although his feverish.


BY Philip Yam

Yam Philip Yam News Editor Scientific American

Answering critics like Terry Singeltary, who feels that the U.S. under- counts CJD, Schonberger conceded that the current surveillance system has errors but stated that most of the errors will be confined to the older population.


Laying Odds

Are prion diseases more prevalent than we thought?

Researchers and government officials badly underestimated the threat that mad cow disease posed when it first appeared in Britain. They didn't think bovine spongiform encephalopathy was a zoonosis-an animal disease that can sicken people. The 1996 news that BSE could infect humans with a new form of Creutzfeldt-Jakob disease stunned the world. It also got some biomedical researchers wondering whether sporadic CJD may really be a manifestation of a zoonotic sickness. Might it be caused by the ingestion of prions, as variant CJD is?

Revisiting Sporadic CJD

It's not hard to get Terry Singeltary going. "I have my conspiracy theories," admitted the 49-year-old Texan.1 Singeltary is probably the nation's most relentless consumer advocate when it comes to issues in prion diseases. He has helped families learn about the sickness and coordinated efforts with support groups such as CJD Voice and the CJD Foundation. He has also connected with others who are critical of the American way of handling the threat of prion diseases. Such critics include Consumers Union's Michael Hansen, journalist John Stauber, and Thomas Pringle, who used to run the voluminous www.madcow. org Web site. These three lend their expertise to newspaper and magazine stories about prion diseases, and they usually argue that prions represent more of a threat than people realize, and that the government has responded poorly to the dangers because it is more concerned about protecting the beef industry than people's health.

Singeltary has similar inclinations. ...

USA ???

Friday, November 30, 2007


Terry S. Singeltary Sr.
P.O. Box 42
Bacliff, Texas USA 77518

Labels: , , , , , ,