Saturday, February 20, 2021

Abnormal prion protein deposits with high seeding activities in the skeletal muscle, femoral nerve, and scalp of an autopsied case of sporadic Creutzfeldt–Jakob disease

Case Report

Abnormal prion protein deposits with high seeding activities in the skeletal muscle, femoral nerve, and scalp of an autopsied case of sporadic Creutzfeldt–Jakob disease

First published:04 February 2021

Abstract

We report the general autopsy findings of abnormal prion protein (PrP) deposits with their seeding activities, as assessed by the real‐time quaking‐induced conversion (RT‐QuIC) method, in a 72‐year‐old female patient with sporadic Creutzfeldt–Jakob disease (sCJD). At 68 years of age, she presented with gait disturbance and visual disorders. Electroencephalography showed periodic synchronous discharge. Myoclonus was also observed. A genetic test revealed that PRNP codon 129 was methionine/methionine (MM). She died of pneumonia three years and four months after disease onset, and a general autopsy was performed. The brain weighed 650 g and appeared markedly atrophic. Immunohistochemistry for PrP revealed synaptic PrP deposits and coarse PrP deposits in the cerebral cortices, basal ganglia, cerebellum, and brainstem. Western blot analysis identified type 1 proteinase‐K‐resistant PrP in frontal cortex samples. PrP deposits were also observed in systemic organs, including the femoral nerve, psoas major muscle, abdominal skin, adrenal medulla, zona reticularis of the adrenal gland, islet cells of the pancreas, and thyroid gland. The RT‐QuIC method revealed positive seeding activities in all examined organs, including the frontal cortex, femoral nerve, psoas major muscle, scalp, abdominal skin, adrenal gland, pancreas, and thyroid gland. The following 50% seeding dose (SD50) values were 9.5 (frontal cortex); 8 ± 0.53 (femoral nerve); 7 ± 0.53 (psoas major muscle); and 7.88 ± 0.17 (scalp). The SD50 values for the adrenal gland, dermis, pancreas, and thyroid gland were 6.12 ± 0.53, 5.25, 4.75, and 4.5, respectively. PrP deposits in general organs may be associated with long‐term disease duration. This case indicated the necessity for general autopsies in sCJD cases to establish strict infection control procedures for surgical treatment and to examine certain organs.

Figure S1 Histopathological findings and prion protein staining in the peripheral organs. (A, D, G, J, and M) HE staining. (B, E, H, K, and N) Immunohistochemistry staining for prion protein (3F4). (C, F, I, L, and O) Immunohistochemistry staining for prion protein (8G8). (A, B, and C) Hair follicle in the dermis: Hair follicle shows normal appearance (A). A small amount of PrP deposits are noted around the hair follicle (B: arrowhead) and sebaceous gland (*) (B). Immunostaining with 8G8 shows a small amount of PrP deposits around the hair follicle (C: arrowhead). Strong immunopositivity is also observed in the hair follicle (C). (D, E, and F) Eccrine gland in the dermis: Eccrine gland shows normal appearance (D). Faint cytoplasmic PrP staining can be observed (E). Immunostaining with 8G8 shows marked immunopositivity in the eccrine gland (F). (G, H, and I) Zona reticularis in the adrenal gland: The cells of zona reticularis show normal appearance (G). Cytoplasmic PrP staining can be seen (H and I). (J, K, and L) Adrenal medulla: The cells of adrenal medulla show normal appearance (J). Marked cytoplasmic PrP staining can be observed (H). Immunostaining with 8G8 also shows cytoplasmic PrP staining (L). (M, N, and O) Pancreas: Islet cells show normal appearance (M). Faint PrP cytoplasmic staining can be observed in the islet cells (N and O).

Figure S2 (A–F) Immunohistochemistry for prion protein in control case (non‐prion disease). (A, C, and E) Immunohistochemistry staining for prion protein (3F4). (B, D, and F) Immunohistochemistry staining for prion protein (8G8). (A, B) In the zona reticularis of the adrenal gland, cytoplasmic PrP immunostaining is very weak. (C, D) Immunostaining with 3F4 (C) and 8G8 (D) shows weak cytoplasmic PrP staining in the adrenal medulla. (E, F) Immunostaining with 3F4 (E) and 8G8 (F) shows weak cytoplasmic PrP staining in the islet cells.

https://onlinelibrary.wiley.com/doi/abs/10.1111/neup.12717?casa_token=XGjARfGTQIQAAAAA%3A-u2dixLx66OKIAwxxqgyT9q8g6-n3VG91gqoM1Y9LHJbr-hDgrxEaXUUICtoikl8HB4oEGIo2PKzbK8

Wide distribution of prion infectivity in the peripheral tissues of vCJD and sCJD patients

Jean‑Yves Douet1 · Alvina Huor1 · Hervé Cassard1 · Séverine Lugan1 · Naima Aron1 · Mark Arnold2 · Didier Vilette1 · Juan‑Maria Torres3 · James W. Ironside4 · Olivier Andreoletti1

Received: 17 December 2020 / Revised: 18 January 2021 / Accepted: 19 January 2021 © The Author(s) 2021

Abstract

Sporadic Creutzfeldt-Jakob disease (sCJD) is the commonest human prion disease, occurring most likely as the consequence of spontaneous formation of abnormal prion protein in the central nervous system (CNS). Variant Creutzfeldt–Jakob disease (vCJD) is an acquired prion disease that was first identified in 1996. In marked contrast to vCJD, previous investigations in sCJD revealed either inconsistent levels or an absence of PrPSc in peripheral tissues. These findings contributed to the consensus that risks of transmitting sCJD as a consequence of non-CNS invasive clinical procedures were low. In this study, we systematically measured prion infectivity levels in CNS and peripheral tissues collected from vCJD and sCJD patients. Unexpectedly, prion infectivity was detected in a wide variety of peripheral tissues in sCJD cases. Although the sCJD infectivity levels varied unpredictably in the tissues sampled and between patients, these findings could impact on our perception of the possible transmission risks associated with sCJD.

snip...

Recently, bioassays in transgenic mice that express the human PrP gene and display a high sensitivity to sCJD demonstrated the presence of prion infectivity in the plasma and bone marrow of several sCJD patients [17, 32]. These results raised questions about the overall distribution of prion infectivity and transmission risks associated with other peripheral tissues from sCJD patients.

In this study, we measured the prion infectivity levels in a panel of tissues collected from vCJD and sCJD MM1 cases. These bioassays demonstrated that, as expected, consistent titres of infectivity were present in lymphoid tissues from vCJD patients. However, for the non-lymphoid peripheral tissues studied, variable and lower titres of infectivity were detected in both sCJD and vCJD patients. These findings could impact on our perception of the possible transmission risks associated with sCJD involving non-CNS invasive procedures.

snip...

Results

vCJD transmission 

Four clinical vCJD cases (Met129 homozygous) and one asymptomatic vCJD case (Met129/Val129 heterozygous) were selected on the basis of their clinico-pathological features and PrPres Western Blot profile in the brain (Table 1).

A panel of frozen tissues that included CNS (frontal cortex), and 14 different peripheral tissues (such as primary and secondary lymphoid tissues, endocrine and exocrine glands, gonads, kidney, lung, liver, heart and skeletal muscles) from each of these 5 cases was constituted (Table 2). Each sample (10% tissue homogenates) was inoculated by the intracerebral route (IC) to bovine PrP expressing mice (tgBov n=6 per sample, 20 μL per mouse); a bioassay model identified in previous studies as a sensitive and robust approach for the detection and the quantification of vCJD infectivity [15, 17].

In all four vCJD affected patients, the inoculation of frontal cortex homogenate resulted in a 100% attack rate disease transmission (Table 2). Only 5 out of the 54 peripheral tis-sues samples failed to transmit disease in tgBov. Each of the 14 different categories of peripheral tissues caused, at variable extent, occurrence of clinical TSE in tgBov. Based on these transmission results (positive versus absence of transmission), the pattern of vCJD infectivity in peripheral tissues was relatively similar across the four vCJD patients (Table 2).

No TSE clinical signs or PrPres accumulation in the brain was observed in tgBov inoculated with frontal cortex from the asymptomatic vCJD case (> 650 days post inoculation). 8 out of the 13 inoculated categories of peripheral tissues transmitted a disease (lymphoid organs, lung, heart, pancreas and thyroid) in tgBov (Table 2), which indicated a more restricted distribution of the prion infectivity in the organs of this asymptomatic Met/Val129 patient than in the clinically affected Met/Met129 vCJD patients.

The PrPres Western blot profile and the vacuolar lesions profiles observed in mice inoculated with peripheral tissues from both clinical vCJD and asymptomatic patients were identical to those observed in tgBov mice inoculated with the brain of the vCJD affected patients (Fig. 1).No transmission was observed in tgBov mice that received frontal cortex and peripheral tissues homogenates from a non CJD control patient (Met129 homozygous) (Table 2, Fig. 1).

sCJD transmission

Five sCJD patients were selected on the basis of their clin-ico-pathological features, genotype at codon 129 of the PRNP gene (Met129 homozygous) and PrPres Western Blot type 1 profile in the brain (MM1 sCJD cases) (Table 1). This is the commonest subtype of sCJD. A panel of 15 peripheral tissues collected from these MM1 sCJD patients was constituted. This panel matched the one investigated in vCJD affected patients (Table 3).

Each sample (10% tissue homogenates) was inoculated by the intracerebral route (IC) to Met129 human PrP expressing mice (tgMet, n= 6 per sample, 20μL per mouse), a mouse model that we already used to detect and quantify prion infectivity in MM1 sCJD patients [32].

The inoculation of 10% frontal cortex homogenates from the sCJD MM1 patients in tgMet (IC route, 6 mice, 20μL per mouse) resulted in a clinical TSE with mean survival times comprised between 200 and 240 days (Table 3). The PrPres WB profile and the vacuolar lesion profile in the brain of the tgMet indicated that a same prion strain was present in the frontal cortex of these five sCJD patients (Fig. 2).

Unexpectedly, in the majority of the cases, the inoculation in tgMet of the peripheral tissues from the same MM1 sCJD patients resulted in positive transmission. TgMet inoculation revealed the presence of prion infectivity in all the differ-ent categories of peripheral tissues except liver and gonads (Table 3).

However, in contrast with vCJD, the bioassay results (positive versus absence of transmission) indicated that the prion infectivity distribution pattern in peripheral tis-sues strongly differed between the five affected MM1 sCJD patients. For instance, in sCJD case 2, positive transmissions were observed in tgMet inoculated with 10 out of the 13 tested peripheral tissues including lymphoid tissues, salivary glands, kidney, heart and pancreas. In contrast, in sCJD case 3, positive transmissions were only observed for 4 out of the same 13 tissues (lung, adrenal gland, bone marrow and skeletal muscle), with no disease transmission resulting from inoculation of lymphoid tissues, salivary gland, kidney, heart or pancreas (Table 3).

Interestingly, bioassay of the lymphoid tissues (spleen, cervical lymph node and tonsil) resulted in a disease transmission in only 3 out of the 5 sCJD cases (cases 2, 4 and 5). These results support the contention that in MM1 sCJD patients, the presence / absence of infectivity in the lymphoid organs is apparently not a determinant driver of the accumulation of infectivity in the other categories of peripheral tissues.

Despite the differences in bioassay transmission pat-terns, the PrPres Western blot profile and the vacuolar lesions profiles overserved in tgMet mice inoculated with MM1 sCJD peripheral tissues and frontal cortex brain homogenates were identical (Fig. 2), indicating that the same prion strain was present in the peripheral tissues and the CNS of the five MM1 sCJD patients.

No transmission or PrPres accumulation was observed in tgMet mice inoculated with peripheral tissues from the non CJD control patient (Table 3, Fig. 2).

Infectivity titres estimates

In order to estimate the infectivity levels in the vCJD and MM1 sCJD patients’ tissues, we applied the method described by Arnold et al. [4]. This approach uses both the probability of survival (attack rate at each dilution) and the individual mouse survival time at each dilution. The relationship between the titre of inoculum and the prob-ability of infection and the length of the survival times were derived from data corresponding to endpoint titration of a vCJD and a MM1 reference isolate in tgBov and tgMet mice, respectively [17, 32]. A normal distribution for the relationship between dose and survival time was assumed and the probability of infection versus dose was assumed to follow a logistic regression curve (supplementary Fig. 1).

Using this approach, the infectious titre in the frontal cortex of the four vCJD patients was estimated to range between 106.11 and 106.74 ID50 IC in tgBov per gram of tis-sue (Table 2).

The estimated infectivity levels in secondary lymphoid tissues (spleen and cervical lymph node) were 1 to 4 log10 lower than in the frontal cortex of the same patient. Infectivity levels in the other categories of peripheral tissues were 2.5 to 6 log10 lower than in the frontal cortex (Table 2, Fig. 3).Strikingly, in some of the vCJD affected patients, infectivity levels in heart (vCJD-3 and 4), kidney (vCJD-3 and 4), lung(vCJD-3), salivary gland (vCJD-3 and 4) or thyroid (vCJD-4) were only 1 to 2 log10 lower than in the spleen and/or cervical lymph node (Table 2, Fig. 3).

As already stated, the distribution of the prion in the peripheral tissue of the vCJD asymptomatic case was more restricted than in vCJD affected patients (Fig. 3). However, when positive, the peripheral tissues from the asymptomatic patient displayed similar infectivity levels to those observed in the vCJD patients at the clinical stage of the disease (Table 2, Fig. 3).

In the MM1 sCJD patients, the estimated infectivity lev-els in the frontal cortex varied between 105.8 and 107.8 ID50IC in tgMet/gram (Table 3). Infectivity levels in peripheral tissues that scored positive in bioassay were 2.8 to 8 log10 lower than in the frontal cortex of the same patient (Table 3, Fig. 3). In all five cases, no obvious relationship seemed to exist between the infectivity level in the CNS (frontal cortex) and either the distribution or the levels of sCJD infectivity in their peripheral tissues (Fig. 3).

In the sCJD cases 2, 4 and 5, the lymphoid tissues dis-played maximal level of infectivity that were 3–3.5 log10 lower than those observed in the frontal cortex (Table 2, Fig. 3). Strikingly, the infectivity levels associated with some peripheral tissues such as salivary gland (sCJD2), heart (sCJD2), kidney (sCJD 2) or bone marrow (sCJD 5) could be equivalent or even higher than those measured in the lymphoid organs of the same patient (Table 2, Fig. 3).

Discussion 

vCJD associated risks 

Following the emergence of vCJD in the UK in 1996, the presence of abnormal prion protein in the lymphoid tissues of affected patients was rapidly identified [31, 55]. This immediately raised major concerns about the risk of its iatrogenic transmission of the disease (via contaminated surgical instruments and blood transfusion) and led, in many countries, to the implementation of specific preventing against this risk.

Despite a relatively limited number of identified clinical cases (n = 231), the most recent epidemiological studies indicated that 1 out 2000 people in the UK could carry the vCJD agent (as judged by the presence of abnormal prion protein detected by immunohistochemistry in lymphoid follicles in the appendix) and that the exposure period to BSE agent in the UK could have largely exceeded the period initially considered to be at risk (i.e. the 1985–1996 period) [22, 23]. Over the 25 years since the emergence of vCJD only five instances that are a likely consequence of iatrogenic vCJD transmission have come to light, all in the UK and all associated with blood and blood-products [36, 37, 46, 47]. No cases of vCJD due to iatrogenic transmission by medical or surgical procedures have been identified, indicating that the preventive measures implemented to mitigate its transmission were effective [26, 39]. 

The overall picture of the distribution and levels of prion infectivity in the tissues of both vCJD affected and asymptomatic patients that we here report confirm the numerous hypotheses and the mosaic of experimental data that were used to design the infection control measures that were successful in limiting iatrogenic vCJD transmissions. These results also reinforce the fact that vCJD transmission risks have not disappeared since each asymptomatic vCJD infected individual in a human population will continue to represent a potential source of disease transmission.

Peripheral tissue infectivity in sCJD 

Seminal transmission experiments of peripheral tissues from sCJD cases in primate models failed to detect infectivity in a large selection of peripheral tissues, body fluids and excretions (except in one liver sample) [10]. Abnormal PrP immunodetection techniques (Western blot and immunohistochemistry) also failed to reveal the presence of prion in the peripheral tissues of sCJD patients [27, 28].These findings led to the generally accepted view that prion infectivity in the sCJD remains mostly confined to the CNS.

In 2003, improved Western Blot protocols for PrPres immunodetection revealed the presence of prion in the spleen (10 positive out of 28 cases) and/or the skeletal muscle (8 positive out of 32 cases) [24]. More recently, trans-mission studies of sCJD tissues in human PrP expressing transgenic mice (using plasma and bone marrow samples) and in vitro amplification of prions in a small number of sCJD peripheral tissues (skin, kidney, lung, adrenal gland) provided further evidence to the view that prions can accumulate in the peripheral tissues of sCJD affected patients [17, 32, 43, 52].

The results that we here report provide unequivocal and definitive evidence of the widespread distribution of the prion infectivity in the peripheral tissues in MM1 sCJD patients.

Other types of patients

Since our study was restricted to MM1 sCJD cases (the commonest sCJD subtype), additional investigations will be necessary to formally establish that consistent accumulation of prions in peripheral tissues also occurs in patients with other PRNP genotypes (Met/Val129 and Val/Val129) and/or affected with other sCJD prion strains [11]. The presence of abnormal PrP (in spleen and the skeletal muscle) and infectivity (in bone marrow) already identified in MV2 and VV2 sCJD patients indicates that this phenomenon is unlikely to be limited to MM1 sCJD cases [24, 32].

Variability in sCJD patients

The nature of peripheral tissues that accumulated infectivity in sCJD and vCJD cases were relatively similar. While the patterns of prion distribution and the infectivity levels observed in the peripheral tissues were relatively homogenous in the vCJD cases, particularly in lymphoid tissues, a high degree of variability was observed across the sCJD cases. Brain vacuolar lesion profiling and PrPres WB typing confirmed that the same prion strain was present in the brain and the peripheral tissues of all the sCJD affected patients. This rules out the hypothesis that prion strain(s) difference(s) (between individuals or in tissues from a same individual) could be responsible for the observed variability.

The comparison of prion distribution pattern in sCJD case 2 (20-months clinical phase duration) and sCJD cases 1, 3, 4 and 5 patients (1–4 months clinical phase duration) might suggest that, at first glance, a longer clinical phase duration is likely to be associated with a more widespread distribution of prions in the body tissues. However, even if our study rep-resents an unprecedented effort for characterizing CJD agent distribution patterns in the organs of affected patients, the number of sCJD cases that we investigated is too limited to draw definitive conclusions. The characterisation of a larger cohort of sCJD patients will be necessary to establish the relationship that might exist between the distribution and/or infectivity levels in peripheral tissues and sCJD patient age at clinical onset and the duration of the clinical phase of the illness.

Iatrogenic transmission of CJD

Several hundred cases of iatrogenic CJD transmission (iCJD) have been reported worldwide, the vast majority of which are likely to represent transmissions from sCJD patients [9]. The principal sources of these outbreaks were intramuscular injections with contaminated human pituitary-derived growth hormone (226 cases) and implantation of dura mater grafts (228 cases) derived from human cadavers with undiagnosed sCJD infections. A small number of cases were apparently also caused by neurosurgery using contaminated neurosurgical instruments and EEG electrodes (6 cases), transplantation of corneal grafts (2 cases) and intramuscular injections with human pituitary-derived gonadotrophic hormone (4 cases) [9].These cases dramatically illustrate the high resistance of CJD prions to standard medical decontamination procedures and their particular abilities to bind to steel surgical instruments [19, 53]. Survival times in the individuals who were exposed to sCJD agent(s) by the peripheral route could be extremely long and variable; for instance, in patients that received intramuscular injection of contaminated human pituitary-derived growth hormone, the onset of clinical signs and symptoms of iatrogenic CJD could be observed between 4 and 42 years after the treatment [9].

In a context where sCJD infectivity is apparently limited to the CNS, the medical and surgical procedures responsible for iatrogenic transmission of the disease remain relatively limited, the overall risks for sCJD iatrogenic transmission are now considered to be remote since most of these established routes of transmission be avoided (e.g. the use of human pituitary-derived hormones and human dura mater grafts) [9]. 

Our detection of low levels of sCJD infectivity in nonCNS tissues such as lung, heart, muscle or even salivary gland was unexpected. We next reviewed the medical histories for the sCJD patients that we studied (Table 1), which revealed surgical procedures (s-CJD-2 and 4) and/or invasive medical examinations (polypectomy under colonoscopy sCJD-5) only few years before the clinical disease in these patients. Some years ago, the presence of infectivity in the plasma and the detection of abnormal prion protein in the urine of sCJD patients raised concerns about the risks of sCJD transmission by blood transfusion and plasma/urinederived medical products [17, 38]. The detection, in our study, of infectivity in the bone marrow and the kidney of sCJD patients further reinforces these concerns. 

Prion titres as measured by intracerebral inoculation in PrP over-expressing transgenic mice models can provide us with estimates of the relative infectivity levels present in the CNS and peripheral tissues of affected patients. This approach conforms to the current gold standard for quantification of prions. However, in a context where the amount of infectivity that would be necessary to transmit disease to another human remains unknown, the infectivity titre estimates (as established following intracerebral inoculation in a reporter animal model) cannot be used to directly infer transmission risks to patients. Other factors, including the various different potential exposure routes (subcutaneous, intramuscular, etc.) and the decontamination/ sterilisation methodologies used on the surgical instruments /materials involved, will also influence the transmission risk analysis [1].

In many industrialized countries, reliable CJD passive surveillance programs have been established for decades. The apparently stable and low prevalence of sCJD cases in these countries bring some reassurance about the low numbers of iatrogenic CJD cases in this century [9], per-haps reflecting the variable and lower prion titres detected in the non-CNS tissues in this study.

Guidelines are in place to mitigate and control the risk of iatrogenic transmission of CJD in a healthcare setting [1, 56]. The procedures for cleaning and decontamination of surgical instruments and/or medical equipment now includes an assessment of their potential contamination by prions. However, prions are notoriously resistant to physico/chemical treatments and decontamination process that would be efficient on these agents remain generally inapplicable to some surgical and medical equipment [54], resulting in recommendations to destroy neurosurgical instruments that have been used on the brain of a patient with definite or probable CJD. Furthermore, the presence of dementia or an evolving neurodegenerative disorder in a patient undergoing medical or surgical procedures triggers the use of specific protocols designed to prevent the risk of potential transmission of CJD from the equipment used (surgical tools, endoscopes, etc.). The use of cells/tissues/organs and body fluids from these groups of patients for therapeutic purposes (blood donations, tissue grafts, etc.) is also restricted [1, 56].

When considering the risk of iatrogenic transmission of prion agents from CJD patients, one fundamental question is: How early before the occurrence of clinical signs and symptoms is prion infectivity likely to be present in peripheral solid tissues, blood and urine?

All the samples that we used to establish infectivity levels in tissues were collected post mortem in sCJD and vCJD patients at the terminal stage of the disease. There is clear evidence for the presence of infectivity in the blood and the peripheral tissues years before the clinical onset of vCJD in asymptomatic infected patients [3, 8, 16, 17]. However, it is uncertain that the infectivity levels and distribution in the post mortem peripheral tissues of sCJD and vCJD patients reflect the situation that could be observed at a preclinical or early clinical stage in the same patients. In the absence of tissue samples collected from asymptomatic sCJD patients we are totally lacking in data, therefore trying to elaborate further on this question would be totally speculative.

In several forms of genetic prion disease, for example those associated with the E200K PRNP mutation, the clinical disease manifestations, PrPres WB signature and tissue PrPres distributions are similar to that in sCJD [34, 48]. Despite the ethical issues it might raise, the longitudinal collection of blood samples and body fluids, for research purposes, in consenting patients belonging to families affected by these genetic forms of prion diseases (with confirmed mutations of the PRNP gene) may represent the only possibility to address this question.

In conclusion, the systematic surveillance of CJD and related epidemiological studies in many countries confirm the decline of cases of iatrogenic CJD due to recognised medical or surgical procedures, such as human dura mater graft surgery or treatment with human pituitary-derived growth hormone. However, they do not exclude the possibility that iatrogenic transmission could at least partly account for some sCJD cases observed in the population, particularly in localized geographic regions with evidence of CJD case clusters [50].

Many uncertainties remain on the early stages of the prion accumulation and infectivity in the peripheral tis-sues in patients infected with sCJD. However, the results of this study suggest that the iatrogenic transmission risks associated with sCJD peripheral tissues should not be disregarded.



Wednesday, February 3, 2021 

Wide distribution of prion infectivity in the peripheral tissues of vCJD and sCJD patients


Friday, January 29, 2021 
Scientists identify locations of early prion protein deposition in retina, what if?

RESEARCH ARTICLE

***> Preclinical transmission of prions by blood transfusion is influenced by donor genotype and route of infection


J Hosp Infect . 2021 Jan 19;S0195-6701(21)00022-0. doi: 10.1016/j.jhin.2021.01.005. Online ahead of print. 

Improved surveillance of surgical instruments reprocessing following the variant Creutzfeldt-Jakob disease crisis in England: findings from a 3-year survey 

R C Hervé 1, Jean Hedges 2, C W Keevil 3 Affiliations expand PMID: 33482297 DOI: 10.1016/j.jhin.2021.01.005 Abstract Background: Sensitive, direct protein detection methods are now recommended for the inspection of reprocessed reusable surgical instruments in England to reduce the risk of prion transmission.

Aim: To implement an established, highly sensitive method to quantify proteinaceous residues on reprocessed instruments in a Sterile Services Department and evaluate its potential impact on service provision.

Methods: We introduced highly sensitive epifluorescence (EDIC/EF) microscopy in a large SSD. Over three years, we periodically tested two models of washer disinfector using stainless steel tokens spiked with mouse brain homogenate or Browne test soil for comparison. We also obtained data and feedback from staff who have been using EDIC/EF to examine nearly 3,000 reprocessed instruments.

Findings: All reprocessed test surfaces harboured residual contamination (up to 258.4 ng from 1 microgram spikes). Proximity between surfaces affected decontamination efficacy and allowed cross contamination. Up to 50 ng de novo proteinaceous contamination was deposited on control surfaces after a single AWD cycle. The test soil behaved differently than real tissue contamination. SSD staff observed proteinaceous residues on most reprocessed instruments using EDIC/EF, which can detect far smaller amounts than the currently accepted national threshold of five micrograms per side.

Conclusion: Implementing recent national guidelines to address the prions concern proved an eye-opener. Microscopic levels of proteins remain on many reprocessed instruments. The impact most of these residues, potentially including prions, may have on subsequent patients after sterilization remains debatable. Improving surveillance capability in SSDs can support decision making and raise the standards of surgical instruments reprocessing.

Keywords: Surgical instruments; prions; proteins; sterile service departments; surveillance.

Copyright © 2021. Published by Elsevier Ltd.


***>''Implementing recent national guidelines to address the prions concern proved an eye-opener. Microscopic levels of proteins remain on many reprocessed instruments. The impact most of these residues, potentially including prions, may have on subsequent patients after sterilization remains debatable.''<***

DEAD people can't debate this, and it's a damn shame that after 5 decades, or more, of discussing this, we now know what to do, but still refuse to do it i.e. disposable instruments,  jiminy cricket what the hell does it take, how many body bags of iatrogenic cjd (now called sporadic cjd in most cases still) does it take, i guess it's just too easy to call it sporadic cjd and go on down the road.

all iatrogenic cjd is, is sporadic cjd, before the iatrogenic event is discovered, traced back, provern, documented, put into the academic domain, and then finally the public domain, this very seldom happens, thus problem solved, it's all sporadic cjd, PLUS, SPORADIC CJD HAS NOW BEEN LINKED TO ATYPICAL AND TYPICAL BSE, SCRAPIE, AND NOW CWD. ...terry

least we forget...

*** Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery *** 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. 

Laboratory of Central Nervous System Studies, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892. Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them. 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8006664&dopt=Abstract

if that don't convince you, see;

***>>> Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.

========================

Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis. 

SOURCE PRION CONFERENCE 2015

New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication 


Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production 


Detection of protease-resistant cervid prion protein in water from a CWD-endemic area 


A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing 


Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals 


PPo4-4: 

Survival and Limited Spread of TSE Infectivity after Burial 


Volume 26, Number 8—August 2020 

Sporadic Creutzfeldt-Jakob Disease among Physicians, Germany, 1993–2018 high proportion of physicians with sCJD were surgeons


SUNDAY, JULY 19, 2020 

Joseph J. Zubak Orthopaedic surgeon passed away Monday, July 6, 2020, Creutzfeldt-Jakob Disease (CJD)


FRIDAY, JANUARY 31, 2020

CJD TSE Prion Blood Products, iatrogenic transmission, Confucius is confused again, WHAT IF? Docket Number: FDA-2012-D-0307


Variant Creutzfeldt–Jakob Disease Diagnosed 7.5 Years after Occupational Exposure

Variant Creutzfeldt–Jakob disease was identified in a technician who had cut her thumb while handling brain sections of mice infected with adapted BSE 7.5 years earlier. The long incubation period was similar to that of the transfusion-transmitted form of the disease.

TO THE EDITOR:

We report a case of variant Creutzfeldt–Jakob disease (CJD) that was plausibly related to accidental occupational exposure in a technician who had handled murine samples contaminated with the agent that causes bovine spongiform encephalopathy (BSE) 7.5 years earlier.

In May 2010, when the patient was 24 years of age, she worked in a prion research laboratory, where she handled frozen sections of brain of transgenic mice that overexpressed the human prion protein with methionine at codon 129. The mice had been infected with a sheep-adapted form of BSE. During this process, she stabbed her thumb through a double pair of latex gloves with the sharp ends of a curved forceps used to handle the samples. Bleeding was noted at the puncture site.

In November 2017, she began having burning pain in the right shoulder and neck. The pain worsened and spread to the right half of her body during the following 6 months. In November 2018, an examination of a sample of cerebrospinal fluid (CSF) obtained from the patient was normal. Magnetic resonance imaging (MRI) of the brain showed a slight increase in the fluid-attenuated inversion recovery (FLAIR) signal in the caudates and thalami (Fig. S1A and S1B in the Supplementary Appendix, available with the full text of this letter at NEJM.org). In January 2019, she became depressed and anxious and had memory impairment and visual hallucinations. There was hypertonia on the right side of her body. At that time, an analysis of CSF for 14-3-3 protein was negative. In March 2019, MRI showed an increased FLAIR signal in pulvinar and dorsomedial nuclei of thalami (Fig. S1C through S1E).

The patient was found to be homozygous for methionine at codon 129 of the prion protein gene without mutation. An analysis of a sample of CSF on real-time quaking-induced conversion analysis was negative for a diagnosis of sporadic CJD. However, an analysis of plasma and CSF by means of protein misfolding cyclic amplification was positive for the diagnosis of variant CJD (Figure 1A and 1B). The patient died 19 months after the onset of symptoms. Neuropathological examination confirmed the diagnosis of variant CJD (Figure 1C and 1D). Western blot analysis showed the presence of type 2B protease-resistant prion protein in all sampled brain areas. The clinical characteristics of the patient and the postmortem neuropathological features were similar to those observed in 27 patients with variant CJD who had previously been reported in France.1 (Additional details are provided in the Supplementary Appendix.)

There are two potential explanations for this patient’s condition. Oral transmission from contaminated cattle products cannot be ruled out because the patient was born at the beginning of the French BSE outbreak in cattle. However, the last two patients who had confirmed variant CJD with methionine homozygosity at codon 129 in France and the United Kingdom died in 2014 and 2013, respectively, which makes oral transmission unlikely. In France, the risk of variant CJD in 2019 was negligible or nonexistent in the post-1969 birth cohort.2

Percutaneous exposure to prion-contaminated material is plausible in this patient, since the prion strain that she had handled was consistent with the development of variant CJD.3 The 7.5-year delay between the laboratory accident and her clinical symptoms is congruent with the incubation period in the transfusion-transmitted form of the disease. The ability of this strain to propagate through the peripheral route has been documented, and experimental studies with scrapie strains have shown that scarification and subcutaneous inoculation are effective routes.4,5 The last known Italian patient with variant CJD, who died in 2016, had had occupational contact with BSE-infected brain tissues, although subsequent investigation did not disclose a laboratory accident (Pocchiari M, Italian Registry of CJD: personal communication). Thus, the last two cases of variant CJD outside the United Kingdom have been associated with potential occupational exposure. Such cases highlight the need for improvements in the prevention of transmission of variant CJD and other prions that can affect humans in the laboratory and neurosurgery settings, as outlined in the Supplementary Appendix.

Jean-Philippe Brandel, M.D. Assistance Publique–Hôpitaux de Paris, Paris, France

M. Bustuchina Vlaicu, M.D. Groupe Hospitalier Nord-Essonne, Orsay, France

Audrey Culeux, B.Sc. INSERM Unité 1127, Paris, France

Maxime Belondrade, M.Sc. Daisy Bougard, Ph.D. Etablissement Français du Sang, Montpellier, France

Katarina Grznarova, Ph.D. Angeline Denouel, M.Sc. INSERM Unité 1127, Paris, France

Isabelle Plu, M.D. Elodie Bouaziz-Amar, Pharm.D., Ph.D. Danielle Seilhean, M.D., Ph.D. Assistance Publique–Hôpitaux de Paris, Paris, France

Michèle Levasseur, M.D. Groupe Hospitalier Nord-Essonne, Orsay, France

Stéphane Haïk, M.D., Ph.D. INSERM Unité 1127, Paris, France stephane.haik@upmc.fr

Supported by a grant (ANR-10-IAIHU-06) from Programme d’Investissements d’Avenir and Santé Publique France.

Disclosure forms provided by the authors are available with the full text of this letter at NEJM.org.

July 2, 2020 N Engl J Med 2020; 383:83-85 DOI: 10.1056/NEJMc2000687


Supplementary Appendix

This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Brandel J-P, Vlaicu MB, Culeux A, et al. Variant Creutzfeldt–Jakob disease diagnosed 7.5 years after occupational exposure. N Engl J Med 2020;383:83-5. DOI: 10.1056/NEJMc2000687

Full case report

A woman, born in 1986, with only a medical history of dental avulsion and the removal of a nevus started to complain, in November 2017, of burning pain in the right shoulder and the right side of the neck. Over the next 6 months, the pain worsened and spread to the right half-body including the buttocks, the back of the thigh and the foot sole, and the face with ear pain. After several consultations, a first hospital assessment was carried out in November 2018. CSF examination was normal and brain MRI interpreted as normal despite slight high signals in the caudate nucleus and thalami (Supplementary figure 1). The diagnosis of Lyme disease was suspected and treatment with ceftriaxone was initiated. Pain persisted and the patient who was showing signs of depression was referred to a psychiatrist for antidepressant treatment. Memory impairment was noted by relatives in January 2019 and the patient was admitted to a neurology department in February 2019. Right extrapyramidal hypertonia, visual hallucinations and memory problems of recent events were observed. Neurological alterations were associated with severe anxiety. Inflammatory markers, biological and immunological assessments were normal. Serology for conventional agents was negative. Detection of anti-neuronal, anti-thyroid peroxidase, anti-thyroglobulin and anti-thyroidstimulating hormone receptor antibodies yielded negative results. Vitamin B1 and B6 levels were within normal limits. Standard CSF analysis was normal and 14-3-3 protein detection was negative. MRI from mid-March 2019 showed a high signal on the FLAIR sequences in the pulvinar and dorsomedian nuclei of the thalamus, bilaterally, more intense than those observed in the striatum (Supplementary figure 1). A generally slow activity was observed on EEGs. PRNP analysis revealed a homozygous methionine-methionine (MM) genotype at codon 129 without mutation. At this time, the patient fulfilled criteria of probable vCJD. Two different protein misfolding amplification methods were performed. As predicted in a suspected case of vCJD, RT-QuIC detection in the CSF gave a negative result.1 A PMCA test, recently validated for the diagnosis of vCJD in plasma and CSF was performed.2,3 PMCA detection was positive in plasma and CSF. Evolution was marked by the 

3

worsening of cognitive impairment, a small step with balance disorders and an extrapyramidal syndrome.

The patient died 19 months after disease onset.

Neuropathological examination confirmed the diagnosis of vCJD by showing typical florid plaques in the cerebral cortex and cerebellum. Spongiform changes, gliosis and neuronal loss were predominantly observed in the subcortical gray matter. In addition, PrP immunohistochemistry showed multicentric plaques, clumpses, peri-cellular and peri-vascular PrP deposition (Supplementary figure 2). Western blot detection of PrPres was positive and type 2B PrPres was consistently detected in all studied brain areas.

The epidemiological survey revealed that the patient had been employed from 2009 to 2012 in a laboratory involved in prion research. In particular, she has worked on transgenic animal models expressing human and bovine PrP and infected with strains of human or bovine prions. The patient had two work accidents. In May 2010, she stabbed her thumb with sharp ends curved forceps used to handle brain frozen sections of humanized transgenic mice infected with a sheep-adapted BSE agent. The mouse brain handled at the time of the accident was from a secondary intra-cerebral subpassage of sheep BSE in transgenic mice overexpressing a methionine 129-human PrP. To note transmission studies indicate a low or absent transmission barrier to sheep BSE in human M129-PrP mice. The neuropathological phenotype is similar to that observed in mice infected with cattle BSE or vCJD suggesting that sheep-BSE could act as a causal vCJD agent especially in codon 129-methionine homozygotes.

4,5 The patient immediately noticed a bleeding wound. After leaving the level 3 biosafety laboratory, the wounded finger was cleaned with water and immersed for more than ten minutes in a freshly diluted 2% sodium hypochlorite solution. The second accident occurred in September 2011 in a conventional laboratory with no contact with infectious prion material. No other risk factors were identified with the exception, as most French people in her age cohort, a dietary exposure from 1986 to 1996 to bovine products with a BSE risk. 

4

Methods

Clinical and epidemiological data As with all other cases of French vCJD, a direct interview with the patient’s family was conducted. Clinical data were extracted from the medical records and further information was collected using the European network (EuroCJD) questionnaire. The data collected were gender, age at onset and death, clinical features, results of investigations, and specific medical risk factors. These included history of growth hormone therapy, transplantation, surgery, blood transfusion, blood products therapy (albumin, immunoglobulin, clotting factors), vaccinations, professional activity, and stays in UK. The reports of the two accidents at work were collected. Additional data were obtained from the authorities of the research institute. They explained precisely how the patient had been injured, the biological materials handled and how the wounds had been disinfected and treated. Genetic analysis The prion protein gene (PRNP) was analyzed as described previously to obtain the genotype at codon 129 and to exclude a pathogenic mutation.6 An informed consent for genetic analysis was obtained from the patient's husband.

Neuropathological analysis

Samples were taken from 1cm-thick coronal sections after two months of fixation in 10% formalin as described previously.7 After formic acid treatment, specimens were embedded in paraffin. Threemicrometer-thick sections were stained with hematoxylin and eosin and Periodic Acid–Schiff (PAS) methods. PrP immunohistochemistry was performed using the 12F10 mouse monoclonal antibody.8,9 Biochemical analysis PrPres analysis by Western blot was performed from frozen samples of the brain. Tissue homogenization, digestion with proteinase K, purification, electrophoresis and immunoblotting were 

5

done as described previously.10 The biochemical classification according to Parchi and colleagues was used.11

Amplification methods

RT-QuIC analysis in the CSF was performed using hamster full-length (23–231) recombinant PrP as previously described.12 Thirty µl of CSF per well were added and analysis was performed in quadruplicate using a BMG-LABTECH Omega. PMCA amplification in plasma and CSF was performed as described by using brains from transgenic mice overexpressing human M129-PrP as substrate.2,3 For plasma samples, a capture of abnormal PrP using plasminogen-coated magnetic nanobeads was performed before serial amplification. Each round of PMCA comprised 80 cycles of 30 min incubation/20 s sonication. Implications If one considers our patient as a case of a documented accidental transmission of CJD in a research laboratory, several important points should be stressed:

- A single puncture without hollow needle containing infectious material is sufficient to transmit prions in human even with a short contact.

- The incubation period is similar to that seen in MM patients with transfusion-transmitted vCJD, suggesting that the level of accidentally delivered infectious dose is in the same range as that contained in a unit of non-leukodepleted red blood cells.

- Immersing this type of lesion in a freshly diluted 2% sodium hypochlorite solution was not sufficient to prevent contamination. Important consequences in terms of prevention of occupational risks and public health issue associated with prions should be underlined:

6

- Individual protection against accidental wounds should be reinforced in research laboratories, neuropathology department and autopsy rooms. Neurosurgery teams should take the risk into account, especially when a cortical biopsy is performed to explore patients with unexplained encephalopathy. This implies accurate information and training of exposed professionals.

- The efficacy of decontamination procedures to be applied in case of accidental exposure has not been demonstrated using adequate in vivo models of transmission. A more aggressive postexposure management is to be defined and validated experimentally.

- The mechanisms of prion neuro-invasion in this specific scenario are unknown and may involve prion propagation through (1) the peripheral innervation of digital pulp, (2) an up-take by phagocytes driving prion replication in the lymphoid system followed by propagation via the autonomous nervous system or (3) blood transport.

- No preventive treatment is available to date. While a few approaches that may limit peripheral prion propagation and neuro-invasion have been proposed (such as corticoids and pentosan polysulfate), their efficiency in such a transmission pattern and in the use of relevant prion strains has to be confirmed.

7

References

1. Zanusso G, Monaco S, Pocchiari M, Caughey B. Advanced tests for early and accurate diagnosis of Creutzfeldt-Jakob disease. Nat Rev Neurol 2016;12:325-33.

2. Bougard D, Brandel JP, Belondrade M, et al. Detection of prions in the plasma of presymptomatic and symptomatic patients with variant Creutzfeldt-Jakob disease. Science translational medicine 2016;8:370ra182.

3. Bougard D, Belondrade M, Mayran C, et al. Diagnosis of Methionine/Valine Variant Creutzfeldt-Jakob Disease by Protein Misfolding Cyclic Amplification. Emerging infectious diseases 2018;24:1364-6.

4. Plinston C, Hart P, Chong A, et al. Increased susceptibility of human-PrP transgenic mice to bovine spongiform encephalopathy infection following passage in sheep. Journal of virology 2011;85:1174-81.

5. Joiner S, Asante EA, Linehan JM, et al. Experimental sheep BSE prions generate the vCJD phenotype when serially passaged in transgenic mice expressing human prion protein. J Neurol Sci 2018;386:4-11.

6. Laplanche JL, Delasnerie-Lauprêtre N, Brandel JP, et al. Molecular genetics of prion diseases in France. Neurology 1994;44:2347-51.

7. Hauw JJ, Sazdovitch V, Laplanche JL, et al. Neuropathologic variants of sporadic CreutzfeldtJakob disease and codon 129 of PrP gene. Neurology 2000;54:1641-6.

8. Haik S, Faucheux BA, Sazdovitch V, et al. The sympathetic nervous system is involved in variant Creutzfeldt-Jakob disease. Nature medicine 2003;9:1121-3.

9. Privat N, Laffont-Proust I, Faucheux BA, et al. Human prion diseases: from antibody screening to a standardized fast immunodiagnosis using automation. Mod Pathol 2008;21:140-9.

8

10. Levavasseur E, Laffont-Proust I, Morain E, et al. Regulating factors of PrP glycosylation in Creutzfeldt-Jakob disease--implications for the dissemination and the diagnosis of human prion strains. PloS one 2008;3:e2786.

11. Parchi P, Notari S, Weber P, et al. Inter-laboratory assessment of PrPSc typing in creutzfeldtjakob disease: a Western blot study within the NeuroPrion Consortium. Brain pathology 2009;19:384- 91.

12. McGuire LI, Poleggi A, Poggiolini I, et al. Cerebrospinal fluid real-time quaking-induced conversion is a robust and reliable test for sporadic creutzfeldt-jakob disease: An international study. Annals of neurology 2016;80:160-5.

snip...


Variant Creutzfeldt–Jakob Disease Diagnosed 7.5 Years after Occupational Exposure

Variant Creutzfeldt–Jakob disease was identified in a technician who had cut her thumb while handling brain sections of mice infected with adapted BSE 7.5 years earlier. The long incubation period was similar to that of the transfusion-transmitted form of the disease.


FRIDAY, SEPTEMBER 06, 2019 

Disinfection of Multi-Use Ocular Equipment for Ophthalmological Procedures: A Review of Clinical Effectiveness, Cost-Effectiveness, and Guidelines


all iatrogenic cjd is, is sporadic cjd, before the iatrogenic event is discovered, traced back, provern, documented, put into the academic domain, and then finally the public domain, this very seldom happens, thus problem solved, it's all sporadic cjd, PLUS, SPORADIC CJD HAS NOW BEEN LINKED TO ATYPICAL AND TYPICAL BSE, SCRAPIE, AND NOW CWD. ...terry


vpspr, sgss, sffi, TSE, an iatrogenic by-product of gss, ffi, familial type prion disease, what if ???

Greetings Friends, Neighbors, and Colleagues,



Wednesday, September 11, 2019 

Is the re-use of sterilized implant abutments safe enough? (Implant abutment safety) iatrogenic TSE Prion


SUNDAY, OCTOBER 27, 2013 

A Kiss of a Prion: New Implications for Oral Transmissibility


THURSDAY, MAY 17, 2012 

Iatrogenic Creutzfeldt-Jakob Disease, Final Assessment Volume 18, Number 6—June 2012


boy did they miss this next one;

THURSDAY, MAY 17, 2012 

Iatrogenic Creutzfeldt-Jakob Disease, Final Assessment Volume 18, Number 6—June 2012


Thursday, April 12, 2012
 
Health professions and risk of sporadic Creutzfeldt–Jakob disease, 1965 to 2010
 
Eurosurveillance, Volume 17, Issue 15, 12 April 2012
 
Research articles
 

i tried to tell GUT journal, and Bramble et al this way back, decades ago...terry

were not all CJDs, even nvCJD, just sporadic, until proven otherwise?

Terry S. Singeltary Sr., P.O. BOX, Bacliff, Texas 77518 USA


Professor Michael Farthing wrote:

Louise Send this to Bramble (author) for a comment before we post. Michael 

-----Original Message----- 

From: Terry S. Singeltary Sr. [mailto:flounder@wt.net] ;

Sent: 03 June 2002 17:14 


Subject: gutjnl_el;21 Terry S. Singeltary Sr. (3 Jun 2002) "CJDs (all human TSEs) and Endoscopy Equipment" 

----------------------------------------------------------------- 

Date submitted: 3 Jun 2002 eLetter ID: gutjnl_el;21

Gut eLetter for Bramble and Ironside 50 (6): 888 

----------------------------------------------------------------- 

Name: Terry S. Singeltary Sr. Email: flounder@wt.net Title/position: disabled {neck injury} Place of work: CJD WATCH IP address: 216.119.162.85 Hostname: 216-119-162-85.ipset44.wt.net Browser: Mozilla/5.0 (Windows; U; Win98; en-US; rv:0.9.4) Gecko/20011019 Netscape6/6.2

Parent ID: 50/6/888 

Citation: Creutzfeldt-Jakob disease: implications for gastroenterology 

M G Bramble and J W Ironside Gut 2002; 50: 888-890 (Occasional viewpoint) 



----------------------------------------------------------------- 

"CJDs (all human TSEs) and Endoscopy Equipment" 

-----------------------------------------------------------------

regarding your article;

Creutzfeldt-Jakob disease: implications for gastroenterology

i belong to several support groups for victims and relatives of CJDs. several years ago i did a survey regarding endoscopy equipment and how many victims of CJDs have had any type of this procedure done. to my surprise, many victims had some kind of endoscopy work done on them. as this may not be a smoking gun, i think it should warrant a 'red flag' of sorts, especially since data now suggests a substantial TSE infectivity in the gut wall of species infected with TSEs. If such transmissions occur, the ramifications of spreading TSEs from endoscopy equipment to the general public would be horrible, and could potential amplify the transmission of TSEs through other surgical procedures in that persons life, due to long incubation and sub-clinical infection. Science to date, has well established transmission of sporadic CJDs with medical/surgical procedures.

Terry S. Singeltary Sr. CJD WATCH

Subject: Re: gutjnl_el;21 Terry S. Singeltary Sr. (3 Jun 2002) "CJDs (all human TSEs) and Endoscopy Equipment" Date: Thu, 20 Jun 2002 16:19:51 -0700 From: "Terry S. Singeltary Sr." To: Professor Michael Farthing CC: lcamp@BMJgroup.com References: <001501c21099$5c8bc620$7c58d182@mfacdean1.cent.gla.ac.uk>

Greetings again Professor Farthing and BMJ,

I was curious why my small rebuttal of the article described below was not listed in this month's journal of GUT? I had thought it was going to be published, but I do not have full text access. Will it be published in the future? Regardless, I thought would pass on a more lengthy rebuttal of mine on this topic, vCJD vs sCJDs and endoscopy equipment. I don't expect it to be published, but thought you might find it interesting, i hope you don't mind and hope to hear back from someone on the questions I posed...

Here is my short submission I speak of, lengthy one to follow below that:

Date submitted: 3 Jun 2002

snip...see full text;

Friday, September 27, 2019

Prion disease and recommended procedures for flexible endoscope reprocessing – a review of policies worldwide and proposal for a simplified approach Singeltary, GUT journal and Bramble et al 

 
Saturday, January 16, 2010
 
*** Evidence For CJD TSE Transmission Via Endoscopes 1-24-3 re-Singeltary to Bramble et al
 
Evidence For CJD/TSE Transmission Via Endoscopes
 
From Terry S. Singletary, Sr flounder@wt.net 1-24-3
 
Terry S. Singeltary Sr., P.O. , Bacliff, Texas 77518 USA
 
 
Professor Michael Farthing wrote:
 
*** Louise Send this to Bramble (author) for a comment before we post. Michael
 


 re-Human Prion Diseases in the United States Posted by flounder on 01 Jan 2010 at 18:11 GMT    


Research articles Health professions and risk of sporadic Creutzfeldt– Jakob disease, 1965 to 2010

15. Terry S. Singeltary Sr. Doctor Antonio Ruiz Villaespesa, pathologist and CJD researcher deceased because of Creutzfeldt-Jakob Disease SPAIN. 21 Apr 2009. [Accessed 11 Apr 2012]. In: Monitoring the occurrence of emerging forms of CJD [blog]. Available from: 



Monday, August 17, 2009

Transmissible Spongiform Encephalopathy Agents: Safe Working and the Prevention of Infection: Annex J,K, AND D Published: 2009


TUESDAY, AUGUST 12, 2008 

Biosafety in Microbiological and Biomedical Laboratories Fifth Edition 2007 (occupational exposure to prion diseases)

 
Wednesday, August 20, 2008
 
Tonometer disinfection practice in the United Kingdom: A national survey
 
 
Tuesday, August 12, 2008
 
Biosafety in Microbiological and Biomedical Laboratories Fifth Edition 2007 (occupational exposure to prion diseases)
 
 
Monday, December 31, 2007
 
Risk Assessment of Transmission of Sporadic Creutzfeldt-Jakob Disease in Endodontic Practice in Absence of Adequate Prion Inactivation
 
 
Subject: CJD: update for dental staff
 
Date: November 12, 2006 at 3:25 pm PST
 
1: Dent Update. 2006 Oct;33(8):454-6, 458-60.
 
CJD: update for dental staff.
 


MONDAY, JANUARY 14, 2019 

Evaluation of iatrogenic risk of CJD transmission associated with Chronic Wasting Disease TSE Prion in Texas TAHC TPWD


FRIDAY, JANUARY 31, 2020 

CJD TSE Prion Blood Products, iatrogenic transmission, Confucius is confused again, WHAT IF? Docket Number: FDA-2012-D-0307


CJD TSE Prion Blood Products, iatrogenic transmission, Confucius is confused again, WHAT IF?

''In the 2016 guidance, we recommended that prospective blood donors should be indefinitely deferred if they report having a blood relative with CJD. However, almost all cases reported are sCJD, not a genetic form of CJD. Blood relatives of individuals with sCJD are not at increased risk of developing the disease. The rare genetic forms of CJD (e.g., fCJD, GSS, FFI) share pathophysiological features with sCJD, and the transmission risk by blood components remains theoretical. Consequently, we recommend that establishments may stop asking prospective donors about having blood relatives with CJD.''


Confucius is confused again?

''The rare genetic forms of CJD (e.g., fCJD, GSS, FFI) share pathophysiological features with sCJD, and the transmission risk by blood components remains theoretical. Consequently, we recommend that establishments may stop asking prospective donors about having blood relatives with CJD.''

YET, vpspr, sporadic FFI, sporadic GSS, or the pending cases that can't be identified, are all now listed as sporadic CJD.

WHAT IF, sGSS, sFFI, are of an iatrogenic event from iatrogenic donor being from GSS or FFI?

what if vpspr is another strain of a different sporadic CJD, or familial? see;

7Includes 21 (21 from 2019) cases with type determination pending in which the diagnosis of vCJD has been excluded. 

8The sporadic cases include 3831 cases of sporadic Creutzfeldt-Jakob disease (sCJD), 67 cases of Variably Protease-Sensitive Prionopathy (VPSPr) and 35 cases of sporadic Fatal Insomnia (sFI). 

9Total does not include 264 Familial cases diagnosed by blood test only.


under new proposed guidelines ''we recommend that establishments may stop asking prospective donors about having blood relatives with CJD'' (of which i strongly oppose due to the fact sporadic cjd is not a single entity or a spontaneous event, never which have been proven), but under these guidelines, you will miss the vpspr, sgss, and sffi, because they are under sporadic cjd terminology, would you not?

The occurrence of the disease in a patient who had contact with cases of familial C.J.D., but was not genetically related, has been described in Chile (Galvez et al., 1980) and in France (Brown et al., 1979b). In Chile the patient was related by marriage, but with no consanguinity, and had social contact with subsequently affected family members for 13 years before developing the disease. The contact case in France also married into a family in which C.J.D. was prevalent and had close contact with an affected member. In neither instance did the spouse of the non-familial case have the disease. The case described in this report was similarly related to affected family members and social contact had occurred for 20 years prior to developing C.J.D. If contact transmission had occurred, the minimum transmission period would be 11 years. Contact between sporadic cases has not been described and it is remarkable that possible contact transmissions have all been with familial cases. No method of transmission by casual social contact has been suggested.

WHAT IF?

***The occurrence of contact cases raises the possibility that transmission in families may be effected by an unusually virulent strain of the agent.

snip...see full text here;



Sporadic Creutzfeldt-Jakob Disease in a Woman Married Into a Gerstmann-Sträussler-Scheinker Family: An Investigation of Prions Transmission via Microchimerism 

Aušrinė Areškevičiūtė, MSc, Linea Cecilie Melchior, PhD, Helle Broholm, MD, Lars-Henrik Krarup, MD, PhD, Suzanne Granhøj Lindquist, MD, PhD, Peter Johansen, PhD, Neil McKenzie, PhD, Alison Green, PhD, Jørgen Erik Nielsen, MD, PhD, Henning Laursen, Dr.Med, Eva Løbner Lund, MD, PhD Journal of Neuropathology & Experimental Neurology, Volume 77, Issue 8, August 2018, Pages 673–684, https://doi.org/10.1093/jnen/nly043 Published: 07 June 2018

DISCUSSION

This is the first report of presumed sporadic CJD occurring in a person who married into a GSS family. The estimated prevalence of GSS is in the range of 2–5 per 100 million people worldwide, and the annual mortality rate for sCJD in Denmark is 1.46 per 1 million people (31). The population of Denmark consists of 5 740 185 individuals, and there are 2 registered GSS cases that belong to the same family. The Danish GSS family is only the thirty-fourth known GSS family in the world (32). One could assume that the risk for a Danish man with GSS to have a wife or a mother who would develop CJD in her seventies is as high as for any other man. On the basis of the mortality rate for sCJD, and assuming that the incidence of sCJD is the same among married and unmarried people, we could state that 1 man out of 684 932 men has a risk of marrying a woman who would develop CJD. However, in this case, the man a priori had GSS, which means that it would take 1 man out of 684 932 men with GSS for such a pairing to occur. Considering the worldwide rarity of GSS cases, the likelihood for co-occurrence of GSS and sCJD in one family is hence very low and warrants an investigation for the possible transmission of prions routes.


Volume 25, Number 1—January 2019

Research

Variable Protease-Sensitive Prionopathy Transmission to Bank Vol

Romolo Nonno1, Silvio Notari1, Michele Angelo Di Bari, Ignazio Cali, Laura Pirisinu, Claudia d’Agostino, Laura Cracco, Diane Kofskey, Ilaria Vanni, Jody Lavrich, Piero Parchi, Umberto Agrimi, and Pierluigi GambettiComments to Author 

Author affiliations: Istituto Superiore di Sanità, Rome, Italy (R. Nonno, M.A. Di Bari, L. Pirisinu, C. d’Agostino, I. Vanni, U. Agrimi); Case Western Reserve University, Cleveland, Ohio, USA (S. Notari, I. Cali, L. Cracco, D. Kofskey, J. Lavrich, P. Gambetti); University of Bologna, Bologna, Italy (P. Parchi); Istituto delle Scienze Neurologiche di Bologna, Bologna (P. Parchi)

***> However, the VPSPr prion shares the multiplicity of the resPrPD electrophoretic bands with prions from a subset of inherited prion diseases referred to as Gerstmann-Sträussler-Scheinker disease (GSS), prompting the suggestion that VPSPr is the sporadic form of GSS (7,10). Furthermore, the presence of small amounts of sCJD-like 3-band resPrPD has also been signaled in VPSPr (6,11,12).


Subject: CWD GSS TSE PRION SPINAL CORD, Confucius Ponders, What if?

Saturday, February 2, 2019 

CWD GSS TSE PRION SPINAL CORD, Confucius Ponders, What if?

snip... 

 ***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <*** 

REVIEW 

***> In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. <***

***> The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.<*** 

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***

***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.<*** 

***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***

Thursday, March 8, 2018 

Familial human prion diseases associated with prion protein mutations Y226X and G131V are transmissible to transgenic mice expressing human prion protein


Saturday, February 2, 2019 

CWD GSS TSE PRION SPINAL CORD, Confucius Ponders, What if?


FRIDAY, JANUARY 31, 2020 

CJD TSE Prion Blood Products, iatrogenic transmission, Confucius is confused again, WHAT IF? Docket Number: FDA-2012-D-0307


THURSDAY, JANUARY 30, 2020 

Docket Number: FDA-2012-D-0307 Recommendations to Reduce the Possible Risk of Transmission of Creutzfeldt-Jakob Disease and Variant Creutzfeldt-Jakob Disease by Blood and Blood Components; Draft Guidance for Industry Draft Guidance for Industry Singeltary Submission


THURSDAY, SEPTEMBER 26, 2019 

Veterinary Biologics Guideline 3.32E: Guideline for minimising the risk of introducing transmissible spongiform encephalopathy prions and other infectious agents through veterinary biologics


WEDNESDAY, DECEMBER 04, 2019 

Three Cases of Creutzfeldt-Jakob Disease with Visual Disturbances as Initial Manifestation


Friday, September 27, 2019

Prion disease and recommended procedures for flexible endoscope reprocessing – a review of policies worldwide and proposal for a simplified approach


THURSDAY, SEPTEMBER 26, 2019 

Veterinary Biologics Guideline 3.32E: Guideline for minimising the risk of introducing transmissible spongiform encephalopathy prions and other infectious agents through veterinary biologics


SATURDAY, SEPTEMBER 21, 2019 

National Variability in Prion Disease–Related Safety Policies for Neurologic Procedures


Wednesday, September 11, 2019 

Is the re-use of sterilized implant abutments safe enough? (Implant abutment safety) iatrogenic TSE Prion


FRIDAY, SEPTEMBER 06, 2019 

Disinfection of Multi-Use Ocular Equipment for Ophthalmological Procedures: A Review of Clinical Effectiveness, Cost-Effectiveness, and Guidelines


MONDAY, AUGUST 26, 2019

Creutzfeldt Jakob Disease CJD, TSE, Prion, Surveillance Update August 2019


SUNDAY, MARCH 10, 2019 

National Prion Disease Pathology Surveillance Center Cases Examined¹ Updated Feb 1, 2019 Variably protease-sensitive prionopathy VPSPr


Confucius is confused again?

''The rare genetic forms of CJD (e.g., fCJD, GSS, FFI) share pathophysiological features with sCJD, and the transmission risk by blood components remains theoretical. Consequently, we recommend that establishments may stop asking prospective donors about having blood relatives with CJD.''

YET, vpspr, sporadic FFI, sporadic GSS, or the pending cases that can't be identified, are all now listed as sporadic CJD.

WHAT IF, sGSS, sFFI, are of an iatrogenic event from iatrogenic donor being from GSS or FFI?

what if vpspr is another strain of a different sporadic CJD, or familial? see;

7Includes 21 (21 from 2019) cases with type determination pending in which the diagnosis of vCJD has been excluded. 

8The sporadic cases include 3831 cases of sporadic Creutzfeldt-Jakob disease (sCJD), 67 cases of Variably Protease-Sensitive Prionopathy (VPSPr) and 35 cases of sporadic Fatal Insomnia (sFI). 

9Total does not include 264 Familial cases diagnosed by blood test only.


under new proposed guidelines ''we recommend that establishments may stop asking prospective donors about having blood relatives with CJD'' (of which i strongly oppose due to the fact sporadic cjd is not a single entity or a spontaneous event, never which have been proven), but under these guidelines, you will miss the vpspr, sgss, and sffi, because they are under sporadic cjd terminology, would you not?

The occurrence of the disease in a patient who had contact with cases of familial C.J.D., but was not genetically related, has been described in Chile (Galvez et al., 1980) and in France (Brown et al., 1979b). In Chile the patient was related by marriage, but with no consanguinity, and had social contact with subsequently affected family members for 13 years before developing the disease. The contact case in France also married into a family in which C.J.D. was prevalent and had close contact with an affected member. In neither instance did the spouse of the non-familial case have the disease. The case described in this report was similarly related to affected family members and social contact had occurred for 20 years prior to developing C.J.D. If contact transmission had occurred, the minimum transmission period would be 11 years. Contact between sporadic cases has not been described and it is remarkable that possible contact transmissions have all been with familial cases. No method of transmission by casual social contact has been suggested.

WHAT IF?

***The occurrence of contact cases raises the possibility that transmission in families may be effected by an unusually virulent strain of the agent.

snip...see full text here;



Sporadic Creutzfeldt-Jakob Disease in a Woman Married Into a Gerstmann-Sträussler-Scheinker Family: An Investigation of Prions Transmission via Microchimerism 

Aušrinė Areškevičiūtė, MSc, Linea Cecilie Melchior, PhD, Helle Broholm, MD, Lars-Henrik Krarup, MD, PhD, Suzanne Granhøj Lindquist, MD, PhD, Peter Johansen, PhD, Neil McKenzie, PhD, Alison Green, PhD, Jørgen Erik Nielsen, MD, PhD, Henning Laursen, Dr.Med, Eva Løbner Lund, MD, PhD Journal of Neuropathology & Experimental Neurology, Volume 77, Issue 8, August 2018, Pages 673–684, https://doi.org/10.1093/jnen/nly043 Published: 07 June 2018

DISCUSSION

This is the first report of presumed sporadic CJD occurring in a person who married into a GSS family. The estimated prevalence of GSS is in the range of 2–5 per 100 million people worldwide, and the annual mortality rate for sCJD in Denmark is 1.46 per 1 million people (31). The population of Denmark consists of 5 740 185 individuals, and there are 2 registered GSS cases that belong to the same family. The Danish GSS family is only the thirty-fourth known GSS family in the world (32). One could assume that the risk for a Danish man with GSS to have a wife or a mother who would develop CJD in her seventies is as high as for any other man. On the basis of the mortality rate for sCJD, and assuming that the incidence of sCJD is the same among married and unmarried people, we could state that 1 man out of 684 932 men has a risk of marrying a woman who would develop CJD. However, in this case, the man a priori had GSS, which means that it would take 1 man out of 684 932 men with GSS for such a pairing to occur. Considering the worldwide rarity of GSS cases, the likelihood for co-occurrence of GSS and sCJD in one family is hence very low and warrants an investigation for the possible transmission of prions routes.


Volume 25, Number 1—January 2019

Research

Variable Protease-Sensitive Prionopathy Transmission to Bank Vol

Romolo Nonno1, Silvio Notari1, Michele Angelo Di Bari, Ignazio Cali, Laura Pirisinu, Claudia d’Agostino, Laura Cracco, Diane Kofskey, Ilaria Vanni, Jody Lavrich, Piero Parchi, Umberto Agrimi, and Pierluigi GambettiComments to Author 

Author affiliations: Istituto Superiore di Sanità, Rome, Italy (R. Nonno, M.A. Di Bari, L. Pirisinu, C. d’Agostino, I. Vanni, U. Agrimi); Case Western Reserve University, Cleveland, Ohio, USA (S. Notari, I. Cali, L. Cracco, D. Kofskey, J. Lavrich, P. Gambetti); University of Bologna, Bologna, Italy (P. Parchi); Istituto delle Scienze Neurologiche di Bologna, Bologna (P. Parchi)

***> However, the VPSPr prion shares the multiplicity of the resPrPD electrophoretic bands with prions from a subset of inherited prion diseases referred to as Gerstmann-Sträussler-Scheinker disease (GSS), prompting the suggestion that VPSPr is the sporadic form of GSS (7,10). Furthermore, the presence of small amounts of sCJD-like 3-band resPrPD has also been signaled in VPSPr (6,11,12).


FRIDAY, JANUARY 10, 2014

vpspr, sgss, sffi, TSE, an iatrogenic by-product of gss, ffi, familial type prion disease, what it ???

Greetings Friends, Neighbors, and Colleagues,

vpspr, sgss, sffi, TSE, an iatrogenic by-product of gss, ffi, familial type prion disease, what it ???

Confucius is confused again.

I was just sitting and thinking about why there is no genetic link to some of these TSE prion sGSS, sFFi, and it’s really been working on my brain, and then it hit me today.
what if, vpspr, sgss, sffi, TSE prion disease, was a by-product from iatrogenic gss, ffi, familial type prion disease ???
it could explain the cases of no genetic link to the gss, ffi, familial type prion disease, to the family.
sporadic and familial is a red herring, in my opinion, and underestimation is spot on, due to the crude prehistoric diagnostic procedures and criteria and definition of a prion disease.
I say again, what if, iatrogenic, what if, with all these neurological disorders, with a common denominator that is increasingly showing up in the picture, called the prion.
I urge all scientist to come together here, with this as the utmost of importance about all these neurological disease that are increasingly showing up as a prion mechanism, to put on the front burners, the IATROGENIC aspect and the potential of transmission there from, with diseases/disease??? in question.
by definition, could they be a Transmissible Spongiform Encephalopathy TSE prion type disease, and if so, what are the iatrogenic chances of transmission?
this is very important, and should be at the forefront of research, and if proven, could be a monumental breakthrough in science and battle against the spreading of these disease/diseases.

sporadic CJD, along with new TSE prion disease in humans, of which the young are dying, of which long duration of illness from onset of symptoms to death have been documented, only to have a new name added to the pot of prion disease i.e. sporadic GSS, sporadic FFI, and or VPSPR. I only ponder how a familial type disease could be sporadic with no genetic link to any family member? when the USA is the only documented Country in the world to have documented two different cases of atypical H-type BSE, with one case being called atypical H-G BSE with the G meaning Genetic, with new science now showing that indeed atypical H-type BSE is very possible transmitted to cattle via oral transmission (Prion2014). sporadic CJD and VPSPR have been rising in Canada, USA, and the UK, with the same old excuse, better surveillance. You can only use that excuse for so many years, for so many decades, until one must conclude that CJD TSE prion cases are rising. a 48% incease in CJD in Canada is not just a blip or a reason of better surveillance, it is a mathematical rise in numbers. More and more we are seeing more humans exposed in various circumstance in the Hospital, Medical, Surgical arenas to the TSE Prion disease, and at the same time in North America, more and more humans are becoming exposed to the TSE prion disease via consumption of the TSE prion via deer and elk, cattle, sheep and goats, and for those that are exposed via or consumption, go on to further expose many others via the iatrogenic modes of transmission of the TSE prion disease i.e. friendly fire. I pondered this mode of transmission via the victims of sporadic FFI, sporadic GSS, could this be a iatrogenic event from someone sub-clinical with sFFI or sGSS ? what if?

Alzheimer's disease

let's not forget the elephant in the room. curing Alzheimer's would be a great and wonderful thing, but for starters, why not start with the obvious, lets prove the cause or causes, and then start to stop that. think iatrogenic, friendly fire, or the pass it forward mode of transmission. think medical, surgical, dental, tissue, blood, related transmission. think transmissible spongiform encephalopathy aka tse prion disease aka mad cow type disease... 

Commentary: Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy





Self-Propagative Replication of Ab Oligomers Suggests Potential Transmissibility in Alzheimer Disease 

*** Singeltary comment PLoS *** 

Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ? 

Posted by flounder on 05 Nov 2014 at 21:27 GMT 


IN CONFIDENCE

5 NOVEMBER 1992

TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES

[9. Whilst this matter is not at the moment directly concerned with the iatrogenic CJD cases from hgH, there remains a possibility of litigation here, and this presents an added complication. 

There are also results to be made available shortly 

(1) concerning a farmer with CJD who had BSE animals, 

(2) on the possible transmissibility of Alzheimer’s and 

(3) a CMO letter on prevention of iatrogenic CJD transmission in neurosurgery, all of which will serve to increase media interest.]




THURSDAY, FEBRUARY 15, 2018 

Iatrogenic Creutzfeldt-Jakob disease with Amyloid-β pathology: an international study

http://creutzfeldt-jakob-disease.blogspot.com/2018/02/iatrogenic-creutzfeldt-jakob-disease.html

TSE PRION ZOONOSIS ZOONOTIC POTENTIAL

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf 

***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20 

PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20

Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 

http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160

1: J Infect Dis 1980 Aug;142(2):205-8

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

snip...

The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.

PMID: 6997404


Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6


Nature. 1972 Mar 10;236(5341):73-4.

Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).

Gibbs CJ Jr, Gajdusek DC.

Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0

Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)

C. J. GIBBS jun. & D. C. GAJDUSEK

National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland

SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).



Wednesday, February 16, 2011

IN CONFIDENCE

SCRAPIE TRANSMISSION TO CHIMPANZEES

IN CONFIDENCE


> However, to date, no CWD infections have been reported in people.
key word here is ‘reported’. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can’t, and it’s as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it’s being misdiagnosed as sporadic CJD. …terry
*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
Chronic Wasting Disease CWD TSE Prion aka mad deer disease zoonosis
We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;
(3) Reliable essays can be established to detect CWD infection in humans; and
(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.
ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE
Prion 2017 Conference
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 
This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. 
Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. 
At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS 
PRION 2018 CONFERENCE
Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice
Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge).
To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years.
After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles.
Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate.
The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.
Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP.
The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD..
***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***
Prion Conference 2018
READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT from this study ;
P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States
Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA..
SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD
states.
AND ANOTHER STUDY;
P172 Peripheral Neuropathy in Patients with Prion Disease
Wang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio..
IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017,
AND
included 104 patients. SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%),
AND
THAT The Majority of cases were male (60%), AND half of them had exposure to wild game.
snip…
see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below…terry
Prion 2018 Conference
8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available.
International Conference on Emerging Diseases, Outbreaks & Case Studies & 16th Annual Meeting on Influenza March 28-29, 2018 | Orlando, USA
Qingzhong Kong
Case Western Reserve University School of Medicine, USA
Zoonotic potential of chronic wasting disease prions from cervids
Chronic wasting disease (CWD) is the prion disease in cervids (mule deer, white-tailed deer, American elk, moose, and reindeer). It has become an epidemic in North America, and it has been detected in the Europe (Norway) since 2016. The widespread CWD and popular hunting and consumption of cervid meat and other products raise serious public health concerns, but questions remain on human susceptibility to CWD prions, especially on the potential difference in zoonotic potential among the various CWD prion strains. We have been working to address this critical question for well over a decade. We used CWD samples from various cervid species to inoculate transgenic mice expressing human or elk prion protein (PrP). We found infectious prions in the spleen or brain in a small fraction of CWD-inoculated transgenic mice expressing human PrP, indicating that humans are not completely resistant to CWD prions; this finding has significant ramifications on the public health impact of CWD prions. The influence of cervid PrP polymorphisms, the prion strain dependence of CWD-to-human transmission barrier, and the characterization of experimental human CWD prions will be discussed.
Speaker Biography Qingzhong Kong has completed his PhD from the University of Massachusetts at Amherst and Post-doctoral studies at Yale University. He is currently an Associate Professor of Pathology, Neurology and Regenerative Medicine. He has published over 50 original research papers in reputable journals (including Science Translational Medicine, JCI, PNAS and Cell Reports) and has been serving as an Editorial Board Member on seven scientific journals. He has multiple research interests, including public health risks of animal prions (CWD of cervids and atypical BSE of cattle), animal modeling of human prion diseases, mechanisms of prion replication and pathogenesis, etiology of sporadic Creutzfeldt-Jacob disease (CJD) in humans, normal cellular PrP in the biology and pathology of multiple brain and peripheral diseases, proteins responsible for the α-cleavage of cellular PrP, as well as gene therapy and DNA vaccination.
SATURDAY, FEBRUARY 23, 2019 

Chronic Wasting Disease CWD TSE Prion and THE FEAST 2003 CDC an updated review of the science 2019


TUESDAY, NOVEMBER 04, 2014 

Six-year follow-up of a point-source exposure to CWD contaminated venison in an Upstate New York community: risk behaviours and health outcomes 2005–2011

Authors, though, acknowledged the study was limited in geography and sample size and so it couldn't draw a conclusion about the risk to humans. They recommended more study. Dr. Ermias Belay was the report's principal author but he said New York and Oneida County officials are following the proper course by not launching a study. "There's really nothing to monitor presently. No one's sick," Belay said, noting the disease's incubation period in deer and elk is measured in years. "


Transmission Studies

Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS

resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.

snip.... 


Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿ 

Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations

In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species. 


Prions in Skeletal Muscles of Deer with Chronic Wasting Disease 

Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure. 


*** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.

see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”

From: TSS 

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

Sent: Monday, September 30, 2002 9:22 AM

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Dear Sir/Madam,

In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

Ermias Belay, M.D. Centers for Disease Control and Prevention

-----Original Message-----

From: Sent: Sunday, September 29, 2002 10:15 AM


Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Sunday, November 10, 2002 6:26 PM .......snip........end..............TSS

Thursday, April 03, 2008

A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.

snip...

*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,

snip... full text ; 


*** I urge everyone to watch this video closely...terry 

*** you can see video here and interview with Jeff's Mom, and scientist telling you to test everything and potential risk factors for humans ***


*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies. 


> However, to date, no CWD infections have been reported in people. 

sporadic, spontaneous CJD, 85%+ of all human TSE, just not just happen. never in scientific literature has this been proven.

if one looks up the word sporadic or spontaneous at pubmed, you will get a laundry list of disease that are classified in such a way;



key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 

*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***

*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).*** 




CWD TSE PRION AND ZOONOTIC, ZOONOSIS, POTENTIAL

Subject: Re: DEER SPONGIFORM ENCEPHALOPATHY SURVEY & HOUND STUDY 

Date: Fri, 18 Oct 2002 23:12:22 +0100 

From: Steve Dealler 

Reply-To: Bovine Spongiform Encephalopathy Organization: Netscape Online member 

To: BSE-L@ References: <3daf5023 .4080804="" wt.net="">

Dear Terry,

An excellent piece of review as this literature is desparately difficult to get back from Government sites.

What happened with the deer was that an association between deer meat eating and sporadic CJD was found in about 1993. The evidence was not great but did not disappear after several years of asking CJD cases what they had eaten. I think that the work into deer disease largely stopped because it was not helpful to the UK industry...and no specific cases were reported. Well, if you dont look adequately like they are in USA currenly then you wont find any!

Steve Dealler =============== 


Stephen Dealler is a consultant medical microbiologist  deal@airtime.co.uk 

BSE Inquiry Steve Dealler

Management In Confidence

BSE: Private Submission of Bovine Brain Dealler

snip...see full text;

MONDAY, FEBRUARY 25, 2019

***> MAD DOGS AND ENGLISHMEN BSE, SCRAPIE, CWD, CJD, TSE PRION A REVIEW 2019


THURSDAY, DECEMBER 17, 2020 

Exposure Risk of Chronic Wasting Disease in Humans 


*** IF CWD is not a risk factor for humans, then I guess the FDA et al recalled all this CWD tainted elk tenderloin (2009 Exotic Meats USA of San Antonio, TX) for the welfare and safety of the dead elk. ...tss
Exotic Meats USA Announces Urgent Statewide Recall of Elk Tenderloin Because It May Contain Meat Derived From An Elk Confirmed To Have Chronic Wasting Disease 
Contact: Exotic Meats USA 1-800-680-4375
FOR IMMEDIATE RELEASE -- February 9, 2009 -- Exotic Meats USA of San Antonio, TX is initiating a voluntary recall of Elk Tenderloin because it may contain meat derived from an elk confirmed to have Chronic Wasting Disease (CWD). The meat with production dates of December 29, 30 and 31, 2008 was purchased from Sierra Meat Company in Reno, NV. The infected elk came from Elk Farm LLC in Pine Island, MN and was among animals slaughtered and processed at USDA facility Noah’s Ark Processors LLC.
Chronic Wasting Disease (CWD) is a fatal brain and nervous system disease found in elk and deer. The disease is caused by an abnormally shaped protein called a prion, which can damage the brain and nerves of animals in the deer family. Currently, it is believed that the prion responsible for causing CWD in deer and elk is not capable of infecting humans who eat deer or elk contaminated with the prion, but the observation of animal-to-human transmission of other prion-mediated diseases, such as bovine spongiform encephalopathy (BSE), has raised a theoretical concern regarding the transmission of CWD from deer or elk to humans. At the present time, FDA believes the risk of becoming ill from eating CWD-positive elk or deer meat is remote. However, FDA strongly advises consumers to return the product to the place of purchase, rather than disposing of it themselves, due to environmental concerns.
Exotic Meats USA purchased 1 case of Elk Tenderloins weighing 16.9 lbs. The Elk Tenderloin was sold from January 16 – 27, 2009. The Elk Tenderloins was packaged in individual vacuum packs weighing approximately 3 pounds each. A total of six packs of the Elk Tenderloins were sold to the public at the Exotic Meats USA retail store. Consumers who still have the Elk Tenderloins should return the product to Exotic Meats USA at 1003 NE Loop 410, San Antonio, TX 78209. Customers with concerns or questions about the Voluntary Elk Recall can call 1-800-680-4375. The safety of our customer has always been and always will be our number one priority.
Exotic Meats USA requests that for those customers who have products with the production dates in question, do not consume or sell them and return them to the point of purchase. Customers should return the product to the vendor. The vendor should return it to the distributor and the distributor should work with the state to decide upon how best to dispose. If the consumer is disposing of the product he/she should consult with the local state EPA office.
#
RSS Feed for FDA Recalls Information11 [what's this?12]
Scientific Advisors and Consultants Staff 2001 Advisory Committee TSE PRION Singeltary Submission Freas Monday, January 08,2001 3:03 PM FDA Singeltary submission 2001 

Greetings again Dr. Freas and Committee Members, 

I wish to submit the following information to the Scientific Advisors and Consultants Staff 2001 Advisory Committee (short version). I understand the reason of having to shorten my submission, but only hope that you add it to a copy of the long version, for members to take and read at their pleasure, (if cost is problem, bill me, address below). So when they realize some time in the near future of the 'real' risks i speak of from human/animal TSEs and blood/surgical products. I cannot explain the 'real' risk of this in 5 or 10 minutes at some meeting, or on 2 or 3 pages, but will attempt here: 

fda link is dead in the water; 


snip...see full text 


the British disease...NOT, the UKBSEnvCJD only theory was/is bogus $$$


*** USA sporadic CJD MAD COW DISEASE HAS HUGE PROBLEM Video
 
*** sporadic CJD linked to mad cow disease
 
*** you can see video here and interview with Jeff's Mom, and scientist telling you to test everything and potential risk factors for humans ***
 


MAD DOGS AND ENGLISHMEN BSE, SCRAPIE, CWD, CJD, TSE PRION A REVIEW 2019

BSE INQUIRY EVIDENCE

Why did the appearance of new TSEs in animals matter so much? It has always been known that TSEs will transfer across species boundaries. The reason for this was never known until the genetic nature of the prion gene was fully investigated and found to be involved. The gene is found to have well preserved sites and as such there is a similar gene throughout the animal kingdom...and indeed a similar gene is found in insects! It is NOT clear that the precise close nature of the PrP gene structure is essention for low species barriers. Indeed it is probably easier to infect cats with BSE than it is to infect sheep. As such it is not clear that simply because it is possible to infect BSE from cattle into certain monkeys then other apes will necessarily be infectable with the disease. One factor has stood out, however, and that is that BSE, when inoculated into mice would retain its apparent nature of disease strain, and hence when it was inoculated back into cattle, then the same disease was produced. Similarly if the TSE from kudu was inoculated into mice then a similar distribution of disease in the brain of the mouse is seen as if BSE had been inoculated into the mouse. This phenomenon was not true with scrapie, in which the transmission across a species barrier was known to lose many of the scrapie strain phenomena in terms of incubation period or disease histopathology. This also suggested that BSE was not derived from scrapie originally but we probably will never know.
------------------------------------------------------------------------
TSE in wild UK deer? The first case of BSE (as we now realise) was in a nyala in London zoo and the further zoo cases in ungulates were simply thought of as being interesting transmissions of scrapie initially. The big problem started to appear with animals in 1993-5 when it became clear that there was an increase in the CJD cases in people that had eaten deer although the statistics involved must have been questionable. The reason for this was that the CJD Surveillance was well funded to look into the diet of people dying of CJD. This effect is not clear with vCJD...if only because the numbers involved are much smaller and hence it is difficult to gain enough statistics. They found that many other foods did not appear to have much association at all but that deer certainly did and as years went by the association actually became clearer. The appearance of vCJD in 1996 made all this much more difficult in that it was suddenly clearer that the cases of sporadic CJD that they had been checking up until then probably had nothing to do with beef...and the study decreased. During the period there was an increasing worry that deer were involved with CJD..
see references:
DEER BRAIN SURVEY



i have not updated my blogspot url with all this data archived, but i will work on it...but until then, i have updated this on the above links with live urls to the actual BSE Inquiry documents...

Subject: Re: DEER SPONGIFORM ENCEPHALOPATHY SURVEY & HOUND STUDY 

Date: Fri, 18 Oct 2002 23:12:22 +0100 

From: Steve Dealler 

Reply-To: Bovine Spongiform Encephalopathy Organization: Netscape Online member 

To: BSE-L@ References: <3daf5023 .4080804="" wt.net="">

Dear Terry,

An excellent piece of review as this literature is desparately difficult to get back from Government sites.

What happened with the deer was that an association between deer meat eating and sporadic CJD was found in about 1993. The evidence was not great but did not disappear after several years of asking CJD cases what they had eaten. I think that the work into deer disease largely stopped because it was not helpful to the UK industry...and no specific cases were reported. Well, if you dont look adequately like they are in USA currenly then you wont find any!

Steve Dealler =============== 


Stephen Dealler is a consultant medical microbiologist  deal@airtime.co.uk 

BSE Inquiry Steve Dealler

Management In Confidence

BSE: Private Submission of Bovine Brain Dealler


reports of sheep and calf carcasses dumped...


re-scrapie to cattle GAH Wells BSE Inquiry

https://web.archive.org/web/20090506043931/http://www.bseinquiry.gov.uk/files/yb/1993/12/09001001.pdf

Dr. Dealler goes rogue to confirm BSE




Confirmation BSE Dealler's mad cow


BSE vertical transmission


1993 cjd report finds relationship with eat venison and cjd increases 9 fold, let the cover up begin...tss


FINDINGS

*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02)..

The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).

snip...

It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).

snip...

In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...

snip...

In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)

snip...see full report ; 


GAME FARM INDUSTRY WANTS TO COVER UP FINDINGS OF INCREASE RISK TO CJD FROM CERVID

BSE INQUIRY

CJD9/10022

October 1994

Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane 

BerksWell Coventry CV7 7BZ

Dear Mr Elmhirst,

CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT

Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.

The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended.. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.

The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.

The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.

I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all. 


The BSE Inquiry / Statement No 324

Dr James Kirkwood (not scheduled to give oral evidence)

Statement to the BSE Inquiry

James K Kirkwood BVSc PhD FIBiol MRCVS

[This witness has not been asked to give oral evidence in Phase 1 of the Inquiry]

1. I became involved in the field of TSEs through my work as Head of the Veterinary Science Group at the Zoological Society of London’s Institute of Zoology. I held this post from November 1984 until June 1996, when I took up my present post at UFAW. During this time, concurrent with the BSE epidemic, cases of scrapie-like spongiform encephalopathies occurred in animals at the Zoological Society of London’s collections at Regent’s Park and Whipsnade and in other zoos. It was appropriate to investigate the epidemiology of these cases in order to try to determine the possible impact on zoo animals and breeding programmes, and to consider how the disease in zoo animals might be controlled.

2. Throughout the period from 1985 to March 1996, I worked at the Institute of Zoology (IoZ). I was Head of the Veterinary Science Group of the IoZ and Senior Veterinary Officer of the Zoological Society of London (ZSL). I was responsible for the provision of the veterinary service for the ZSL collections.

3. During the period from 1985 to March 1996, scrapie-like spongiform encephalopathies were diagnosed in the following animals which died, or were euthanased, at London Zoo and Whipsnade:

Animal Sex Date of Death Age (mos)

Arabian Oryx Oryx leucoryx F 24.3.89 38

Greater kudu Tragelaphus strepsiceros (Linda) F 18.8.89 30

Greater kudu (Karla) F 13.11.90 19 Greater kudu (Kaz) M 6.6.91 37

Greater kudu (Bambi) M 24.10.91 36

Greater kudu (346/90) M 26.2.92 18

Greater kudu (324/90) F 22.11.92 38

Cheetah Acinonyx jubatus (Michelle) F 22.12.93 91

All these cases were described in papers published in the scientific literature (as cited below).


MONDAY, JANUARY 04, 2021 

NC1209: North American interdisciplinary chronic wasting disease research consortium Singeltary Submission January 2021


Friday, December 14, 2012 

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012 

snip..... 

In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law. Animals considered at high risk for CWD include: 

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and 

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal. 

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants. 

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. 

It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011. 

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB. 

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products. 

snip..... 

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011). The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE). Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison. snip..... The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008). 

snip..... 

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion. snip..... In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates. 

snip..... 

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents. 

snip..... 


***> READ THIS VERY, VERY, CAREFULLY, AUGUST 1997 MAD COW FEED BAN WAS A SHAM, AS I HAVE STATED SINCE 1997! 3 FAILSAFES THE FDA ET AL PREACHED AS IF IT WERE THE GOSPEL, IN TERMS OF MAD COW BSE DISEASE IN USA, AND WHY IT IS/WAS/NOT A PROBLEM FOR THE USA, and those are; 

BSE TESTING (failed terribly and proven to be a sham) 

BSE SURVEILLANCE (failed terribly and proven to be a sham) 

BSE 589.2001 FEED REGULATIONS (another colossal failure, and proven to be a sham) 

these are facts folks. trump et al just admitted it with the feed ban. 

see; 

FDA Reports on VFD Compliance 

John Maday 

August 30, 2019 09:46 AM VFD-Form 007 (640x427) 

Before and after the current Veterinary Feed Directive rules took full effect in January, 2017, the FDA focused primarily on education and outreach. ( John Maday ) Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary. On August 29, FDA released its first report on inspection and compliance activities. The report, titled “Summary Assessment of Veterinary Feed Directive Compliance Activities Conducted in Fiscal Years 2016 – 2018,” is available online.


SUNDAY, SEPTEMBER 1, 2019 

***> FDA Reports on VFD Compliance 


TUESDAY, APRIL 18, 2017 

*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP *** 

THURSDAY, SEPTEMBER 26, 2019 

Veterinary Biologics Guideline 3.32E: Guideline for minimising the risk of introducing transmissible spongiform encephalopathy prions and other infectious agents through veterinary biologics


U.S.A. 50 STATE BSE MAD COW CONFERENCE CALL Jan. 9, 2001

Subject: BSE--U.S. 50 STATE CONFERENCE CALL Jan. 9, 2001

Date: Tue, 9 Jan 2001 16:49:00 -0800

From: "Terry S. Singeltary Sr."

Reply-To: Bovine Spongiform Encephalopathy


snip...

[host Richard Barns] and now a question from Terry S. Singeltary of CJD Watch.

[TSS] yes, thank you, U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?

[no answer, you could hear in the back ground, mumbling and 'we can't. have him ask the question again.]

[host Richard] could you repeat the question?

[TSS] U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?

[not sure whom ask this] what group are you with?

[TSS] CJD Watch, my Mom died from hvCJD and we are tracking CJD world-wide.

[not sure who is speaking] could you please disconnect Mr. Singeltary

[TSS] you are not going to answer my question?

[not sure whom speaking] NO

snip...see full archive and more of this;


THURSDAY, DECEMBER 17, 2020 

THE MAD COW BSE TSE PRION THAT STOLE CHRISTMAS DECEMBER 2003, WHAT REALLY HAPPENED, A REVIEW 2020 


WEDNESDAY, DECEMBER 23, 2020 

Idiopathic Brainstem Neuronal Chromatolysis IBNC BSE TSE Prion a Review 2020


Transmissible Spongiform Encephalopathy TSE Prion End of Year Report

CJD FOUNDATION VIRTUAL CONFERENCE CJD Foundation Research Grant Recipient Reports Panel 2 Nov 3, 2020

zoonotic potential of PMCA-adapted CWD PrP 96SS inoculum


4 different CWD strains, and these 4 strains have different potential to induce any folding of the human prion protein. 


***> PIGS, WILD BOAR, CWD <***

***> POPULATIONS OF WILD BOARS IN THE UNITED STATES INCREASING SUPSTANTUALLY AND IN MANY AREAS WE CAN SEE  A HIGH DENSITY OF WILD BOARS AND HIGH INCIDENT OF CHRONIC WASTING DISEASE

HYPOTHOSIS AND SPECIFIC AIMS

HYPOTHOSIS 

BSE, SCRAPIE, AND CWD, EXPOSED DOMESTIC PIGS ACCUMULATE DIFFERENT QUANTITIES AND STRAINS OF PRIONS IN PERIPHERAL TISSUES, EACH ONE OF THEM WITH PARTICULAR ZOONOTIC POTENTIALS


Final Report – CJD Foundation Grant Program A. 

Project Title: Systematic evaluation of the zoonotic potential of different CWD isolates. Principal Investigator: Rodrigo Morales, PhD.


Systematic evaluation of the zoonotic potential of different CWD isolates. Rodrigo Morales, PhD Assistant Professor Protein Misfolding Disorders lab Mitchell Center for Alzheimer’s disease and Related Brain Disorders Department of Neurology University of Texas Health Science Center at Houston Washington DC. July 14th, 2018

Conclusions and Future Directions • We have developed a highly sensitive and specific CWD-PMCA platform to be used as a diagnostic tool. • Current PMCA set up allow us to mimic relevant prion inter-species transmission events. • Polymorphic changes at position 96 of the prion protein apparently alter strain properties and, consequently, the zoonotic potential of CWD isolates. • Inter-species and inter-polymorphic PrPC → PrPSc conversions further increase the spectrum of CWD isolates possibly present in nature. • CWD prions generated in 96SS PrPC substrate apparently have greater inter-species transmission potentials. • Future experiments will explore the zoonotic potential of CWD prions along different adaptation scenarios, including inter-species and inter-polymorphic.



Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES Location: Virus and Prion Research

Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease 

Author item MOORE, SARAH - Orise Fellow item Kunkle, Robert item KONDRU, NAVEEN - Iowa State University item MANNE, SIREESHA - Iowa State University item SMITH, JODI - Iowa State University item KANTHASAMY, ANUMANTHA - Iowa State University item WEST GREENLEE, M - Iowa State University item Greenlee, Justin Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 3/15/2017 Publication Date: N/A Citation: N/A Interpretive Summary:

Technical Abstract: Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study, neurological signs consistent with prion disease were observed only in one pig: an intracranially challenged pig that was euthanized at 64 months post-challenge. The purpose of this study was to use an antigen-capture immunoassay (EIA) and real-time quaking-induced conversion (QuIC) to determine whether PrPSc is present in lymphoid tissues from pigs challenged with the CWD agent. 

Methods: At two months of age, crossbred pigs were challenged by the intracranial route (n=20), oral route (n=19), or were left unchallenged (n=9). At approximately 6 months of age, the time at which commercial pigs reach market weight, half of the pigs in each group were culled (<6 month challenge groups). The remaining pigs (>6 month challenge groups) were allowed to incubate for up to 73 months post challenge (mpc). The retropharyngeal lymph node (RPLN) was screened for the presence of PrPSc by EIA and immunohistochemistry (IHC). The RPLN, palatine tonsil, and mesenteric lymph node (MLN) from 6-7 pigs per challenge group were also tested using EIA and QuIC. 

Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.



Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research

Title: The agent of chronic wasting disease from pigs is infectious in transgenic mice expressing human PRNP 

Author item MOORE, S - Orise Fellow item Kokemuller, Robyn item WEST-GREENLEE, M - Iowa State University item BALKEMA-BUSCHMANN, ANNE - Friedrich-Loeffler-institut item GROSCHUP, MARTIN - Friedrich-Loeffler-institut item Greenlee, Justin Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 5/10/2018 Publication Date: 5/22/2018 Citation: Moore, S.J., Kokemuller, R.D., West-Greenlee, M.H., Balkema-Buschmann, A., Groschup, M.H., Greenlee, J.J. 2018. The agent of chronic wasting disease from pigs is infectious in transgenic mice expressing human PRNP. Prion 2018, Santiago de Compostela, Spain, May 22-25, 2018. Paper No. WA15, page 44.

Interpretive Summary:

Technical Abstract: We have previously shown that the chronic wasting disease (CWD) agent from white-tailed deer can be transmitted to domestic pigs via intracranial or oral inoculation although with low attack rates and restricted PrPSc accumulation. The objective of this study was to assess the potential for cross-species transmission of pig-passaged CWD using bioassay in transgenic mice. Transgenic mice expressing human (Tg40), bovine (TgBovXV) or porcine (Tg002) PRNP were inoculated intracranially with 1% brain homogenate from a pig that had been intracranially inoculated with a pool of CWD from white-tailed deer. This pig developed neurological clinical signs, was euthanized at 64 months post-inoculation, and PrPSc was detected in the brain. Mice were monitored daily for clinical signs of disease until the end of the study. Mice were considered positive if PrPSc was detected in the brain using an enzyme immunoassay (EIA). In transgenic mice expressing porcine prion protein the average incubation period was 167 days post-inoculation (dpi) and 3/27 mice were EIA positive (attack rate = 11%). All 3 mice were found dead and clinical signs were not noted prior to death. One transgenic mouse expressing bovine prion protein was euthanized due to excessive scratching at 617 dpi and 2 mice culled at the end of the study at 700 dpi were EIA positive resulting in an overall attack rate of 3/16 (19%). None of the transgenic mice expressing human prion protein that died or were euthanized up to 769 dpi were EIA positive and at study end point at 800 dpi 2 mice had positive EIA results (overall attack rate = 2/20 = 10%). The EIA optical density (OD) readings for all positive mice were at the lower end of the reference range (positive mice range, OD = 0.266-0.438; test positive reference range, OD = 0.250-4.000). To the authors’ knowledge, cervid-derived CWD isolates have not been successfully transmitted to transgenic mice expressing human prion protein. The successful transmission of pig-passaged CWD to Tg40 mice reported here suggests that passage of the CWD agent through pigs results in a change of the transmission characteristics which reduces the transmission barrier of Tg40 mice to the CWD agent. If this biological behavior is recapitulated in the original host species, passage of the CWD agent through pigs could potentially lead to increased pathogenicity of the CWD agent in humans.


cwd scrapie pigs oral routes 

***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <*** 

>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <*** 

***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains. 




MONDAY, NOVEMBER 23, 2020 

***> Chronic Wasting Disease CWD TSE Prion Cervid State by State and Global Update November 2020


MONDAY, NOVEMBER 30, 2020 

***> REPORT OF THE MEETING OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES Paris, 9–13 September 2019 BSE, TSE, PRION

see updated concerns with atypical BSE from feed and zoonosis...terry


Monday, November 30, 2020 

Tunisia has become the second country after Algeria to detect a case of CPD within a year


TUESDAY, NOVEMBER 17, 2020 

The European Union summary report on surveillance for the presence of transmissible spongiform encephalopathies (TSE) in 2019 First published 17 November 2020


WEDNESDAY, OCTOBER 28, 2020 

EFSA Annual report of the Scientific Network on BSE-TSE 2020 Singeltary Submission


WEDNESDAY, DECEMBER 23, 2020 

BSE research project final report 2005 to 2008 SE1796 SID5


WEDNESDAY, OCTOBER 28, 2020 

EFSA Scientific Opinion Potential BSE risk posed by the use of ruminant collagen and gelatine in feed for non‐ruminant farmed animals


WEDNESDAY, DECEMBER 2, 2020

EFSA Evaluation of public and animal health risks in case of a delayed post-mortem inspection in ungulates EFSA Panel on Biological Hazards (BIOHAZ) ADOPTED: 21 October 2020

i wonder if a 7 month delay on a suspect BSE case in Texas is too long, on a 48 hour turnaround, asking for a friend???


cwd scrapie pigs oral routes 

***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <*** 

>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <*** 

***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 month group was positive by EIA. PrPSc was detected by QuIC in at least one of the lymphoid tissues examined in 5/6 pigs in the intracranial <6 months group, 6/7 intracranial >6 months group, 5/6 pigs in the oral <6 months group, and 4/6 oral >6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 

***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease. Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains. 




MONDAY, NOVEMBER 23, 2020 

***> Chronic Wasting Disease CWD TSE Prion Cervid State by State and Global Update November 2020


APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission

June 17, 2019

APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission

Greetings APHIS et al, 

I would kindly like to comment on APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], and my comments are as follows, with the latest peer review and transmission studies as references of evidence.

THE OIE/USDA BSE Minimal Risk Region MRR is nothing more than free pass to import and export the Transmissible Spongiform Encephalopathy TSE Prion disease. December 2003, when the USDA et al lost it's supposedly 'GOLD CARD' ie BSE FREE STATUS (that was based on nothing more than not looking and not finding BSE), once the USA lost it's gold card BSE Free status, the USDA OIE et al worked hard and fast to change the BSE Geographical Risk Statuses i.e. the BSE GBR's, and replaced it with the BSE MRR policy, the legal tool to trade mad cow type disease TSE Prion Globally. The USA is doing just what the UK did, when they shipped mad cow disease around the world, except with the BSE MRR policy, it's now legal. 

Also, the whole concept of the BSE MRR policy is based on a false pretense, that atypical BSE is not transmissible, and that only typical c-BSE is transmissible via feed. This notion that atypical BSE TSE Prion is an old age cow disease that is not infectious is absolutely false, there is NO science to show this, and on the contrary, we now know that atypical BSE will transmit by ORAL ROUTES, but even much more concerning now, recent science has shown that Chronic Wasting Disease CWD TSE Prion in deer and elk which is rampant with no stopping is sight in the USA, and Scrapie TSE Prion in sheep and goat, will transmit to PIGS by oral routes, this is our worst nightmare, showing even more risk factors for the USA FDA PART 589 TSE PRION FEED ban. 

The FDA PART 589 TSE PRION FEED ban has failed terribly bad, and is still failing, since August 1997. there is tonnage and tonnage of banned potential mad cow feed that went into commerce, and still is, with one decade, 10 YEARS, post August 1997 FDA PART 589 TSE PRION FEED ban, 2007, with 10,000,000 POUNDS, with REASON, Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement. you can see all these feed ban warning letters and tonnage of mad cow feed in commerce, year after year, that is not accessible on the internet anymore like it use to be, you can see history of the FDA failure August 1997 FDA PART 589 TSE PRION FEED ban here, but remember this, we have a new outbreak of TSE Prion disease in a new livestock species, the camel, and this too is very worrisome.

WITH the OIE and the USDA et al weakening the global TSE prion surveillance, by not classifying the atypical Scrapie as TSE Prion disease, and the notion that they want to do the same thing with typical scrapie and atypical BSE, it's just not scientific.

WE MUST abolish the BSE MRR policy, go back to the BSE GBR risk assessments by country, and enhance them to include all strains of TSE Prion disease in all species. With Chronic Wasting CWD TSE Prion disease spreading in Europe, now including, Norway, Finland, Sweden, also in Korea, Canada and the USA, and the TSE Prion in Camels, the fact the the USA is feeding potentially CWD, Scrapie, BSE, typical and atypical, to other animals, and shipping both this feed and or live animals or even grains around the globe, potentially exposed or infected with the TSE Prion. this APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], under it's present definition, does NOT show the true risk of the TSE Prion in any country. as i said, it's nothing more than a legal tool to trade the TSE Prion around the globe, nothing but ink on paper.

AS long as the BSE MRR policy stays in effect, TSE Prion disease will continued to be bought and sold as food for both humans and animals around the globe, and the future ramifications from friendly fire there from, i.e. iatrogenic exposure and transmission there from from all of the above, should not be underestimated. ...






Comment from Terry Singeltary
Posted by the Animal and Plant Health Inspection Service on Jun 19, 2019

WEDNESDAY, JANUARY 1, 2020 USDA OIE BSE TSE PRION FDA PART 589 BSE TSE PRION aka MAD COW FEED BAN Failure 2020 UPDATE 


Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME. 

snip... 

The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle... 




I URGE EVERYONE TO READ IN FULL, THE OIE REPORT 2019 ABOUT ATYPICAL BSE TSE PRION, SRMs, SBOs, and feed...tss

''Experts could not rule out other causes due to the difficulty of investigating individual cases. Some constraints are the long incubation period of the disease and the lack of detailed information available from farms at the time of the trace-back investigation.''

Scientists investigate origin of isolated BSE cases 

The European response to bovine spongiform encephalopathy (BSE) after the crisis of the 1980s has significantly reduced prevalence of the disease in cattle. However, isolated cases are still being reported in the EU and for this reason the European Commission asked EFSA to investigate their origin.

The key measure for controlling BSE in the EU is a ban on the use of animal proteins in livestock feed. This is because BSE can be transmitted to cattle through contaminated feed, mainly in the first year of life.

Sixty cases of classical BSE have been reported in cattle born after the EU ban was enforced in 2001. None of these animals entered the food chain. Classical BSE is the type of BSE transmissible to humans. The Commission asked EFSA to determine if these cases were caused by contaminated feed or whether they occurred spontaneously, i.e. without an apparent cause.

EFSA experts concluded that contaminated feed is the most likely source of infection. This is because the infectious agent that causes BSE has the ability to remain active for many years. Cattle may have been exposed to contaminated feed because the BSE infectious agent was present where feed was stored or handled. A second possibility is that contaminated feed ingredients may have been imported from non-EU countries.

Experts could not rule out other causes due to the difficulty of investigating individual cases. Some constraints are the long incubation period of the disease and the lack of detailed information available from farms at the time of the trace-back investigation.

EFSA experts made a series of recommendations to maintain and strengthen the EU monitoring and reporting system, and to evaluate new scientific data that become available.

The European response to BSE

The coordinated European response to BSE has succeeded in reducing the prevalence of the disease. Between 2005 and 2015 about 73,000,000 cattle were tested for BSE in the EU, out of which 60 born after the ban tested positive for classical BSE. The number of affected animals rises to 1,259 if cattle born before the ban are included. The number of classical BSE cases has dropped significantly in the EU over time, from 554 cases reported in 2005 to just two in 2015 (both animals born after the ban). Moreover the EU food safety system is designed to prevent the entry of BSE-contaminated meat into the food chain.


MONDAY, NOVEMBER 30, 2020 

***> REPORT OF THE MEETING OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES Paris, 9–13 September 2019 BSE, TSE, PRION

see updated concerns with atypical BSE from feed and zoonosis...terry


WEDNESDAY, DECEMBER 23, 2020 

BSE research project final report 2005 to 2008 SE1796 SID5


TUESDAY, JANUARY 5, 2021 

Exploration of genetic factors resulting in abnormal disease in cattle experimentally challenged with bovine spongiform encephalopathy


THURSDAY, SEPTEMBER 26, 2019 

Veterinary Biologics Guideline 3.32E: Guideline for minimising the risk of introducing transmissible spongiform encephalopathy prions and other infectious agents through veterinary biologics


U.S.A. 50 STATE BSE MAD COW CONFERENCE CALL Jan. 9, 2001

Subject: BSE--U.S. 50 STATE CONFERENCE CALL Jan. 9, 2001

Date: Tue, 9 Jan 2001 16:49:00 -0800

From: "Terry S. Singeltary Sr."

Reply-To: Bovine Spongiform Encephalopathy


snip...

[host Richard Barns] and now a question from Terry S. Singeltary of CJD Watch.

[TSS] yes, thank you, U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?

[no answer, you could hear in the back ground, mumbling and 'we can't. have him ask the question again.]

[host Richard] could you repeat the question?

[TSS] U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?

[not sure whom ask this] what group are you with?

[TSS] CJD Watch, my Mom died from hvCJD and we are tracking CJD world-wide.

[not sure who is speaking] could you please disconnect Mr. Singeltary

[TSS] you are not going to answer my question?

[not sure whom speaking] NO

snip...see full archive and more of this;


*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;


IBNC Tauopathy or TSE Prion disease, it appears, no one is sure 

Terry S. Singeltary Sr., 03 Jul 2015 at 16:53 GMT

PLOS ONE Journal 

IBNC Tauopathy or TSE Prion disease, it appears, no one is sure 

Terry S. Singeltary Sr., 03 Jul 2015 at 16:53 GMT

***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE.

***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.

*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***


WEDNESDAY, DECEMBER 23, 2020 

Idiopathic Brainstem Neuronal Chromatolysis IBNC BSE TSE Prion a Review 2020


***Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle. 

In the US, scrapie is reported primarily in sheep homozygous for 136A/171Q (AAQQ) and the disease phenotype is similar to that seen with experimental strain CH1641.


***Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle. 

P-088 Transmission of experimental CH1641-like scrapie to bovine PrP overexpression mice

Kohtaro Miyazawa1, Kentaro Masujin1, Hiroyuki Okada1, Yuichi Matsuura1, Takashi Yokoyama2

1Influenza and Prion Disease Research Center, National Institute of Animal Health, NARO, Japan; 2Department of Planning and General Administration, National Institute of Animal Health, NARO

Introduction: Scrapie is a prion disease in sheep and goats. CH1641-lke scrapie is characterized by a lower molecular mass of the unglycosylated form of abnormal prion protein (PrpSc) compared to that of classical scrapie. It is worthy of attention because of the biochemical similarities of the Prpsc from CH1641-like and BSE affected sheep. We have reported that experimental CH1641-like scrapie is transmissible to bovine PrP overexpression (TgBoPrP) mice (Yokoyama et al. 2010). We report here the further details of this transmission study and compare the biological and biochemical properties to those of classical scrapie affected TgBoPrP mice.

Methods: The details of sheep brain homogenates used in this study are described in our previous report (Yokoyama et al. 2010). TgBoPrP mice were intracerebrally inoculated with a 10% brain homogenate of each scrapie strain. The brains of mice were subjected to histopathological and biochemical analyses.

Results: Prpsc banding pattern of CH1641-like scrapie affected TgBoPrP mice was similar to that of classical scrapie affected mice. Mean survival period of CH1641-like scrapie affected TgBoPrP mice was 170 days at the 3rd passage and it was significantly shorter than that of classical scrapie affected mice (439 days). Lesion profiles and Prpsc distributions in the brains also differed between CH1641-like and classical scrapie affected mice.

Conclusion: We succeeded in stable transmission of CH1641-like scrapie to TgBoPrP mice. Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle.

snip... 

In the US, scrapie is reported primarily in sheep homozygous for 136A/171Q (AAQQ) and the disease phenotype is similar to that seen with experimental strain CH1641.


CH1641


MONDAY, NOVEMBER 30, 2020 

REPORT OF THE MEETING OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES Paris, 9–13 September 2019 BSE, TSE, PRION


WEDNESDAY, DECEMBER 23, 2020 

BSE research project final report 2005 to 2008 SE1796 SID5


WEDNESDAY, DECEMBER 23, 2020 

Idiopathic Brainstem Neuronal Chromatolysis IBNC BSE TSE Prion a Review 2020


TUESDAY, DECEMBER 01, 2020 

Sporadic Creutzfeldt Jakob Disease sCJD and Human TSE Prion Annual Report December 14, 2020 


Diagnosis and Reporting of Creutzfeldt-Jakob Disease 
Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA Diagnosis and Reporting of Creutzfeldt-Jakob Disease 
To the Editor: 
In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.. 
Terry S. Singeltary, Sr Bacliff, Tex 
1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323. 

Terry S. Singeltary Sr.