Monday, June 19, 2017

Transmissible Spongiform Encephalopathies Advisory Committee June 2017 CJD, BSE, Scrapie, CWD, TSE, Prion?



Transmissible Spongiform Encephalopathies Advisory Committee

Advisory Committee Vacancies, Qualifications, and Experience

Advisory Committee Calendar

The Transmissible Spongiform Encephalopathies Advisory Committee was terminated on June 9, 2016. 

For more information, please refer to the Federal Register Notice FR Document Number 2016-13705 that was published on June 9, 2016.

All topics previously brought before the terminated Transmissible Spongiform Encephalopathies Advisory Committee will now be addressed by the Food and Drug Administration's other advisory committees, such as the Blood Products Advisory Committee (BPAC).


2017 Advisory Committee Tentative Meetings and TSE Prion disease ???


Vaccines and Related Biological Products Advisory Committee

Advisory Committee Vacancies, Qualifications, and Experience Advisory Committee Calendar Vaccines

*** Page Not Found 

*** We can't find the page you're looking for. 

*** Try one of these options. Search FDA.gov Check the FDA Archive Contact FDA




''All topics previously brought before the terminated Transmissible Spongiform Encephalopathies Advisory Committee will now be addressed by the Food and Drug Administration's other advisory committees, such as the Blood Products Advisory Committee (BPAC).''





THURSDAY, JUNE 9, 2016 

Advisory Committee; Transmissible Spongiform Encephalopathies Advisory Committee; Termination


Plasma protein product safety and Creutzfeldt-Jakob disease (CJD) Created: Wednesday, 17 May 2017 01:50 Introduction A recent publication in the Emerging Infectious Diseases journal (published online on June 12, 2017) describes two individuals with bleeding disorders who were diagnosed with sporadic Creutzfeldt-Jakob disease (sCJD) (1). The authors of this scientific report have not established a causal link between the treatment with clotting factors and the development of sporadic CJD and concluded that “the occurrence of these cases may simply reflect a chance event in the context of systematic surveillance for CJD in large populations”.

No sCJD case was reported in previous years in the United Kingdom (UK) or any other country in patient populations treated for bleeding disorders with plasma-derived clotting factors.

Background The scientific publication describes two female patients, one with Hemophilia B and the other with von Willebrand disease, who were diagnosed in their 60-ies as dying from sporadic CJD. Both individuals were treated for decades with plasma-derived and recombinant clotting factor concentrates as well as large numbers of transfused blood components collected in the UK. They were identified as a result of many years of extensive surveillance carried out by the National CJD Research and Surveillance Unit, UK (2).

To address possible concerns of persons with bleeding disorders it is important to highlight the following:

Sporadic CJD is a neurological disorder that occurs in older persons with an incidence of about one (1) case per one million (1 000 000) persons per year (3). The causative agent of sporadic CJD is not a virus or bacterium but a prion protein that, after changing its normal shape, can initiate the development of disease of the brain (4). Sporadic CJD is not the same as variant Creutzfeldt-Jakob Disease (vCJD) that is presumably caused by eating beef products contaminated with bovine spongiform encephalopathy, more commonly known as “mad cow disease” (5). Based on large epidemiological studies in the United States (US) by the American Red Cross (6), as well as in the UK (7) and France (8) sporadic CJD is NOT considered transmissible by blood transfusion. To ensure pathogen safety of plasma collected for fractionation, strict deferral criteria are used as a precautionary measure for selection of donors according to regulatory requirements (9-11). These include deferral of donors with risks for vCJD, family history of CJD and those who were treated with human pituitary-derived medicinal products (e.g. human growth hormone) or had surgeries involving dura mater transplants. Multiple complex manufacturing steps that are used in the production of plasma-derived medicinal products, such as precipitation, adsorption, chromatography and filtration, have shown scientifically proven capacity to remove prions. The effectiveness of these processes has been demonstrated by several studies, including those conducted by PPTA member companies (12-19). According to the assessment of regulatory and health authorities in the European Union [European Medicines Agency (EMA) (9)] and in the US [Food and Drug Administration (FDA) (10)] current cumulative epidemiological evidence does not support transmission of CJD by plasma-derived medicinal products. Systematic surveillance for CJD is in place in Europe (2, 20, 21) as well as in the USA (22) to ensure that any new information on CJD is addressed and assessed appropriately.

Conclusion PPTA agrees with the author’s conclusion that “occurrence of these cases may simply reflect a chance event in the context of systematic surveillance for CJD in large populations" and PPTA sees no reason for additional concern.

For further information, please contact Julie Birkofer Email: jbirkofer@pptaglobal.org Phone: +1.443.433.1117

References


However, lower amounts of PrPsc were detected in adrenals, muscles and intestinal tissue of macaques infected with BSE/vCJD as well as sCJD and iCJD, associated with peripheral nerves. Levels were less than 10,000 times lower than brain PrPres levels (<0 .001="" all="" be="" cjd="" considered="" for="" low-risk="" patients.="" proposed="" span="" that="" therefore="" these="" tissues="" we="">

URGENT GLOBAL UPDATE BLOOD, TISSUE, CJD, nvCJD, GSS, BSE, CWD, SCRAPIE, TSE, PRION

please note concern, a few recent studies...kindest regards, terry

In summary, PrPsc was detectable at high levels in organs and tissues of the LRS only in BSE/vCJD infected animals (0.1% to 10% of the amounts found in the brains of the same animals). We interpreted these results as the BSE prion being highly lymphotropic in primates. These findings correlated indeed with the tonsils, spleens and appendices of vCJD patients being found positive for PrPsc18,19,20). We therefore proposed that LRS tissues be considered ‘high-risk’ in vCJD patients only.

However, lower amounts of PrPsc were detected in adrenals, muscles and intestinal tissue of macaques infected with BSE/vCJD as well as sCJD and iCJD, associated with peripheral nerves. Levels were less than 10,000 times lower than brain PrPres levels (<0 .001="" all="" be="" cjd="" considered="" div="" for="" low-risk="" patients.="" proposed="" that="" therefore="" these="" tissues="" we="">

see ;

Review Modeling Variant Creutzfeldt-Jakob Disease and Its Pathogenesis in Non-human Primates Corinne Lasmézas1)

1) Scripps Florida, 130 Scripps Way, Jupiter FL 33458, USA

 Released 20170330 Received 20170123 Accepted 20170209 

Keywords: prions, variant Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, non-human primates, transmission, pathogenesis, blood Full Text PDF [7720K] Corresponding author: Corinne Lasmézas, Scripps Florida, 130 Scripps Way, Jupiter FL 33458, USA (E-mail: lasmezas (at) scripps.edu) The contents of this article reflect solely the view of the author(s).

Conflict of interest statement: The authors had no conflicts of interest to declare in this article.

This paper was presented at the Animal Prion Diseases Workshop “Updated Diagnosis and Epidemiology of Animal Prion Diseases for Food Safety and Security” supported by the OECD Co-operative Research Programme. (See “Food Safety” Vol.4 (2016), No.4, 103-4.)

Abbreviations: BSE: Bovine Spongiform Encephalopathy; CNS: central nervous system; iCJD: iatrogenic Creutzfeldt-Jakob disease; IV: intravenous; LN: lymph nodes; LRS: lymphoreticular system; PrPsc: disease-associated prion protein; RBCs: red blood cells; sCJD: sporadic Creutzfeldt-Jakob disease; TSEs: transmissible spongiform encephalopathies; vCJD: variant Creutzfeldt-Jakob disease

Index

Abstract 1. Transmission of Bovine Spongiform Encephalopathy (BSE) to CynomolgusMacaques Reproduces vCJD: Establishment of a non-human Primate Model for vCJD 1.1. BSE, a New Disease in Cattle 1.2. vCJD in Humans and Transmission of BSE to Non-human Primates 1.3. Determination of the Minimal Infectious BSE Dose in Non-human Primates 1.4. Adaptation of the BSE Agent to Non-human Primates: Consequences for Human Health 2. The Cynomolgus Macaque as a model to Understand the Pathogenesis of Variant Creutzfeldt-Jakob Disease (vCJD) and Model Risk of Interhuman Transmission 2. 1. Distribution of Prions in Tissues and Organs of BSE/vCJD Macaques after Oral or Intravenous (IV) Inoculation 2. 2. Distribution of Prions in Tissues and Organs of vCJD, Sporadic and Iatrogenic CJD Infected Macaques 2.2. Blood Infectivity Studies in the Macaque vCJD Model Acknowledgments References Abstract In the early 90s’, Europe was shaken by the fear that the prions from “mad cow disease” (bovine spongiform encephalopathy) would transmit the disease to humans via beef products. In 1996, the first variant Creutzfeldt-Jakob (vCJD) patients were described, and the same year our Bovine Spongiform Encephalopathy (BSE) transmission studies to cynomolgus macaques demonstrated that the BSE prion was highly infectious for primates, inducing brain lesions identical to those observed in vCJD patients. These studies provided the first experimental evidence that vCJD was BSE in humans. Subsequent studies established the BSE/vCJD-infected cynomolgus macaque as a robust model to study the pathogenesis of vCJD. We showed rapid adaptation of BSE prions to primates upon subsequent passage, and their distribution in peripheral tissues and blood. Some key studies are summarized in the present paper.

Page top 1. Transmission of Bovine Spongiform Encephalopathy (BSE) to CynomolgusMacaques Reproduces vCJD: Establishment of a non-human Primate Model for vCJD 1.1. BSE, a New Disease in Cattle In 1987, a new prion disease affecting dairy cattle was described in the United Kindom1). Affected cows presented signs of aggressiveness, anxiety, ataxia and were finally found recumbent. The disease was rapidly classified in the group of “transmissible spongiform encephalopathies”, or TSEs, due to the transmissibility of the disease2), as well as the similarities of the neuropathological lesions and molecular hallmark with those found in sheep scrapie and human CJD: neuronal death, spongiform changes, and accumulation of misfolded and aggregated prion protein (termed PrPsc)3). PrPsc is the infectious form of the host prion protein PrP. It is also called a prion (for “proteinaceaous infectious particle4)) or TSE agent. The number of affected cows increased rapidly to top at a 37,280 diagnosed animals in the year of 1992 (OIE data). Thankfully, British epidemiologists recognized that BSE was due to the consumption of prion-tainted meat and bone meal (MBM)5), and the first feed-ban was implemented in 1988, prohibiting the feeding of ruminants with ruminant-derived MBM.

1.2. vCJD in Humans and Transmission of BSE to Non-human Primates In 1991, BSE was reported in a domestic cat that presumably was contaminated via pet food6). Transmission of scrapie from small ruminants to cats had never been described, raising concern that BSE might be more pathogenic than scrapie not only for cats, but also for humans. In order to probe the cow-to-primates species barrier of the BSE agent, we inoculated cynomolgus macaques (Macaca fascicularis) with BSE-infected cow brains at the French Atomic Energy Commision (CEA).

In 1996, 10 young individuals were described in the UK and one in France, harboring an unusual form of CJD that was coined variant CJD (vCJD)7,8). Besides patients being exceptionally young (adolescents and young adults, while sporadic CJD (sCJD) affects people over the age of 60), they exhibited unusual symptoms. Early symptoms were dysaesthesia, behavioral symptoms, depression, ataxia, with myoclonus appearing later on, contrasting with the cognitive course of the disease (memory impairment, dementia) preceding motor impairment, which is most frequently observed in sCJD. Moreover, vCJD patients presented specific neuropathological features with spongiosis and neuronal loss most evident in the basal ganglia and thalamus, and the presence of PrP amyloid plaques (abundant in the cerebral cortex and cerebellum) that were surrounded by vacuoles, giving them a flower-like appearance. These peculiar plaques were called florid plaques7).

At the same time as the first vCJD patients were being described, we were examining the brains of our 3 macaques that had all come down with disease 3 years after intracerebral (IC) inoculation with BSE-infected cow brain. Clinical signs were characterized by behavioral signs such as depression or edginess, as well as truncal ataxia (broad-based gait, tremors) and myoclonus. Neuropathological examination of the brains of the BSE-macaques revealed the presence of florid plaques and other neuropathological features similar to those observed in vCJD patients (Fig. 1). Florid plaques were not present in the brains of macaques inoculated with Kuru or sCJD, and thus were considered specific for infection by the BSE prion. Moreover, PrPsc in BSE-infected macaques and vCJD patients exhibited a similar electrophoretic pattern by western blot (Fig. 1).

In summary, macaques infected by BSE reproduced the behavioral and motor symptoms, the neuropathology and the biochemical signature of vCJD in humans. This study provided the first experimental evidence supporting that vCJD was due to human infection by the BSE agent9), and an experimental model to study the new disease.

1.3. Determination of the Minimal Infectious BSE Dose in Non-human Primates 

In a concerted European effort involving 5 laboratories including ours, the BSE-macaque model was then used to evaluate the minimal amount of BSE-infected material necessary to induce vCJD in primates. Results so far show that 5g of infectious BSE cattle brain is sufficient to induce the disease in all recipient animals by the oral route, with 500 mg yielding an incomplete attack rate10,11). The ID50 of BSE cattle brain is 200 mg for cattle12). These results suggest a low species barrier between cattle and non-human primates.

1.4. Adaptation of the BSE Agent to Non-human Primates: Consequences for Human Health 

The macaque BSE model provided an opportunity to evaluate the possible risk for humans of secondary inter-human transmission of the BSE/vCJD prion. Accidental human-to-human transmissions of sCJD, resulting in iatrogenic CJD (iCJD) has occurred in several unfortunate circumstances (described in ref.13). One of them was the infection of children with CJD-contaminated human growth hormone (hGH) extracted from cadaveric hypophyses. These iCJD patients had been treated for short stature by injection of hGH in childhood, and 226 of them died of iCJD as young adults, mainly in France and the USA13). Other dramatic iCJD cases had been linked to the surgical implantation of dura-mater grafts, resulting in 228 deaths13). A few cases were also due to corneal grafts and intracranial electrodes. Although all known iCJD cases prior to 2004 had been linked to contamination with central nervous system (CNS) tissue, the possibility existed that the BSE agent would harbor a different distribution in primates than the sCJD agent, thus representing a higher risk of transmission via organ/tissue grafts, contamination of surgical instruments or even blood transfusion.

As a first step for risk assessment, we transmitted the BSE prion from macaque to macaque via different routes. We also established a dose-response (incubation time) for the IC route to provide a baseline for subsequent infectivity measurement studies. This experiment showed that the BSE agent adapts rapidly to primates, as incubation periods shortened from 3 to 1.5 years upon secondary passage at the highest dose14). It also showed that, for a given amount of BSE material (40 mg BSE brain homogenate), the incubation period was the same whether inoculation was done by the IC or the intravenous (IV) route.

2. The Cynomolgus Macaque as a model to Understand the Pathogenesis of Variant Creutzfeldt-Jakob Disease (vCJD) and Model Risk of Interhuman Transmission 

2. 1. Distribution of Prions in Tissues and Organs of BSE/vCJD Macaques after Oral or Intravenous (IV) Inoculation 

We compared second passage macaques inoculated with BSE prions by the oral or IV routes15). PrPsc was detected by immunohistochemistry and by ELISA after “scrapie associated fibril” (SAF) purification15). In addition to the brain, we detected PrPsc in spleen, tonsils, intestine and sciatic nerve in amounts that did not depend on the inoculation route, with the exceptions of the spleen where PrPsc amounts were up to 4% the amounts found in the brain after IV inoculation, and up to 0.2% those of the brain after oral dosing15).

2. 2. Distribution of Prions in Tissues and Organs of vCJD, Sporadic and Iatrogenic CJD Infected Macaques 

We also infected macaques with vCJD, sCJD, iCJD16). As determined earlier, BSE and vCJD prions correspond to the same prion strain, and one or the other denomination is used depending on the species of origin for the brain tissue used as inoculum. All prion strains were inoculated in the same manner (intracerebral and intratonsillar combined), in order to be able to directly compare tissue distribution of PrPsc between strains.

Disease-associated PrP deposits were detected by immunocytochemistry in various organs. They were found in the Peyer’s patches of the gut and other lymphoreticular system (LRS) tissue of BSE/vCJD infected animals (Fig. 2). By PET-blot, we showed that these deposits corresponded to proteinase K-resistant PrP, a biochemical subset of PrPsc. Interestingly, not all Peyer’s patches of a single animal were PrPsc positive (Fig. 2), showing that PrPsc-negative LRS tissue biopsies may lead to false negative diagnostic results.

Pathological PrP deposits were also detected in the enteric nervous system in macaques infected with all prion strains. Fig. 3 shows the localization of pathological PrP in the pericarya of neurons of the myenteric plexus, as well as in small nerve fibers of the inner muscular layer of the intestine.

Pathological PrP deposits were also found in peripheral nerves and in muscle for all CJD strains (Table 1). In the peripheral nerves, they were found mostly at the surface of Schwann cells (Fig. 4). In muscle, they were localized to specific foci in the vicinity of nerve fibers (Fig. 5). Our results suggest that the heterogeneous, patchy distribution of pathological PrP deposits in muscles corresponds to the distribution zones of motor end plates. This study provides a possible explanation for the variably positive detection of pathological PrP in muscle samples of sCJD patients17).

PrPsc amounts were also measured semi-quantitatively using a sensitive biochemical detection method including phosphotungstic acid precipitation as a concentration method, and western blot or ELISA detection16). This method revealed the presence of PrPsc in the spleen of the sCJD infected macaque and tonsils of the iCJD infected macaque, but no PrPsc could be detected in lymph nodes and Peyer’s patches of these animals, a result most likely due to the presence of PrPsc amounts at the threshold of detection in the LRS of sCJD and iCJD macaques, and sampling variations. These results are summarized in Table 1.

In summary, PrPsc was detectable at high levels in organs and tissues of the LRS only in BSE/vCJD infected animals (0.1% to 10% of the amounts found in the brains of the same animals). We interpreted these results as the BSE prion being highly lymphotropic in primates. These findings correlated indeed with the tonsils, spleens and appendices of vCJD patients being found positive for PrPsc18,19,20). We therefore proposed that LRS tissues be considered ‘high-risk’ in vCJD patients only.

However, lower amounts of PrPsc were detected in adrenals, muscles and intestinal tissue of macaques infected with BSE/vCJD as well as sCJD and iCJD, associated with peripheral nerves. Levels were less than 10,000 times lower than brain PrPres levels (<0 .001="" all="" be="" cjd="" considered="" div="" for="" low-risk="" patients.="" proposed="" that="" therefore="" these="" tissues="" we="">

Our results expanded upon observations made in vCJD patients that PrPsc is detectable in tonsils, emphasizing that BSE prions are largely lymphotropic in primates, and may replicate in lymph notes, tonsils, spleen and Peyer’s patches before the symptomatic phase. Our subsequent studies confirmed that lymph node biopsies of BSE-inoculated macaques were positive for PrPsc prior to the onset of clinical signs (see below). In another study, gut-associated lymphoid tissue and gut-draining lymph nodes were found positive for PrPsc within one year of oral infection of macaques with cattle BSE21). On the other hand, distribution of PrPsc in muscle of macaques inoculated with vCJD, sCJD and iCJD suggests a centrifugal spread of prions from the CNS to muscle motor plates via motor nerves, occurring after CNS invasion by prions. In addition, it is probable that centripetal spread of prions via peripheral nerves also occurs in earlier stages of infection stochastically from various points of entry, even in the absence of prior LRS replication. We demonstrated this paradigm earlier in severely immunodeficient (SCID) mice infected with mouse-adapted scrapie22). Moreover, spread from the gut to the CNS via autonomic nerve fibers has been shown in experimental scrapie and BSE23,24,25). Fig. 6 illustrates the distribution and proposed propagation of prions in our non-human primate model.

2.2. Blood Infectivity Studies in the Macaque vCJD Model The lymphotropic properties of BSE prions raised the important question of the presence of infectivity in blood of vCJD patients.

We initiated a large blood transfusion study where whole blood, white blood cells or plasma from either vCJD patients or BSE/vCJD macaques was injected by IV or IC to recipient macaques. This experiment led to most macaques surviving over prolonged periods of time (>10 years), and few coming down with BSE/vCJD or intercurrent illnesses. These studies continued after the author of this manuscript left the CEA. Interim transmission results are shown in Fig. 7, and some important observations were as follows. Blood depleted for red blood cells (RBC) from a vCJD patient (7.5 mL) injected intravenously did not result in any clinical disease in the recipient macaque after 10 years, yet this animal harbored positive IHC staining in the inguinal lymph nodes (LNs). Another macaque, who had received 25 mL of RBC-depleted blood intravenously from another vCJD patient, died suddenly at 42 months after inoculation, and harbored PrPsc positive inguinal LNs. Two other animals, that received 500 µL of buffy coat (BC) from vCJD patients by IC, were still alive 10 years after inoculation (with PrPsc positive LNs, Fig. 7A). A whole blood transfusion of 40 mL from a vCJD macaque (who died 3 years after intracerebral + intratonsillar inoculation of human vCJD brain homogenate) induced clinical signs of vCJD in the recipient macaque 66 months after the transfusion. Inguinal lymph nodes biopsies had been positive since 45 months, i.e. 75% of the incubation period (Fig. 7B). Other macaques transfused with blood from BSE-macaques survived more than 10 years, but some had positive LNs (Fig. 7C). Another notable result was the transmission of BSE infection by the plasma from a macaque that had been dosed orally with cattle BSE 27.5 months earlier. The donor macaque died with a behavioral syndrome of self-injury 117 months after challenge with a diagnosis of probable BSE, hence infectivity was present in its blood at a quarter of the incubation period (Fig. 7D).

In 2004, the first transfusion-related case of vCJD was described in a patient who had been transfused with non-leucoreduced red blood cells from a donor who developed vCJD 3.5 years after the donation26). A total of four transfusion-related vCJD transmissions have been reported to date27).

Acknowledgments 

I thank the many people who supported and participated in this work at the CEA: Dominique Dormont, Jean-Philippe Deslys, Christian Herzog, Nathalie Lescoutra, Nicole Salès, Emmanuel Comoy, René Rioux. I also thank Ray Bradley and Michael Dawson for providing BSE-infected cattle brain homogenates. I am thankful to Robert Will and Nicolas Kopp for providing vCJD samples, and to James Ironside for his collaboration on the neuropathology of BSE-infected macaques. I am grateful to my European collaborators Maurizio Pocchiari, Gerhard Hunsmann, Johannes Löwer, Pär Bierke, Loredana Ingrosso, Uwe Hahmann, Dirk Motzkus, Edgar Holznagel, for their friendship and for embarking on this challenging project.



SATURDAY, MAY 20, 2017 

Sporadic Creutzfeldt-Jakob Disease in 2 Plasma Product Recipients, United Kingdom


FRIDAY, APRIL 21, 2017

URGENT GLOBAL UPDATE BLOOD, TISSUE, CJD, nvCJD, GSS, BSE, CWD, SCRAPIE, TSE, PRION


2015 PRION CONFERENCE

 *** RE-P.164: Blood transmission of prion infectivity in the squirrel monkey: The Baxter study


*** PRION 2017 CONFERENCE ABSTRACT ***

MONDAY, JUNE 19, 2017 

PRION 2017 CONFERENCE ABSTRACT P61 vCJD strain properties in a Spanish mother and son replicate as those of a young UK case


Subject: PRION 2017 CONFERENCE ABSTRACT First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress

First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress
Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 

University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 

This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. 

Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. 

At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 

PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS


TUESDAY, JUNE 13, 2017

PRION 2017 CONFERENCE ABSTRACT First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress










Subject: CWD TRANSMITS TO MACAQUE ORALLY MUSCLE INTAKE

Notice to Members Regarding Chronic Wasting Disease (CWD)

Posted on: May 31st, 2017 

To: MNA Members From: Métis Nation of Alberta 

Date: Wednesday, May 31, 2017 

Métis Nation of Alberta (MNA) was made aware of a recent Canadian research study examining the transmission of Chronic Wasting Disease. The initial results of the study indicate that macaque monkeys (genetically similar to humans) can be infected with Chronic Wasting Disease (CWD) after eating deer that is infected with CWD. CWD is a prion disease, which are fatal, transmissible diseases characterized by abnormal proteins in the brain and nervous system. To date no research has shown that CWD can be passed on to humans, and no human cases of CWD have ever been identified. However, this new research indicates that it is a possibility. The Deputy Chief Medical Officer of Health has reached out to us to share with our Métis harvesters this important information. For more information you can visit:


Chronic Wasting Disease: CFIA Research Summary 

 Embargoed until May 23, 2017 

(OCR of a scanned original) 

Research Findings 

Chronic Wasting Disease (CWD) is a progressive, fatal disease of the nervous system of cervids including deer, elk, moose, and reindeer that is caused by abnormal proteins called prions. It is known as a transmissible spongiform encephalopathy (TSE). Other TSEs include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle, and Creutzfeldt-Jakob disease (CJD) in humans.

A limited number of experimental studies have demonstrated that non-human primates, specifically squirrel monkeys, are susceptible to CWD prions. An ongoing research study has now shown that CWD can also be transmitted to macaques, which are genetically closer to humans. 

The study led by Dr. Stefanie Czub, a scientist at the Canadian Food Inspection Agency (CFIA), and funded by the Alberta Prion Research institute has demonstrated that by orally administering material under experimental conditions from cervids (deer and elk) naturally infected with CWD, the disease can be transmitted to macaques. 

in this project, which began in 2009, 18 macaques were exposed to CWD in a variety of ways: by injecting into the brain, through contact with skin, oral administration, and intravenously (into the bloodstream through veins). So far, results are available from 5 animals. At this point, two animals that were exposed to CWD by direct introduction into the brain, one that was administered infected brain material by oral administration and two that were given infected muscle by oral administration have become infected with CWD. The study is ongoing and testing continues in the remaining animals. The early results will be presented at PRlON 2017, the annual international conference on prion diseases, in Edinburgh, Scotland, May 23 to 26, 2017. 

Potential impacts of the new finding

Since 2003 Canada has a policy that recommends that animals and materials known to be infected with prions be removed from the food chain and from health products. Although no direct evidence of CWD prion transmission to humans has ever been recorded, the policy advocates a precautionary approach to managing CWD and potential human exposure to prions. These initial findings do not change Health Canada’s Health Products and Food Branch (HPFB) position on food and health products. A precautionary approach is still recommended to manage the potential risks of exposure to prions through food and health products. Measures are in place at federal, provincial and territorial levels to reduce human exposure to products potentially contaminated by CWD by preventing known infected animals from entering the marketplace. 

While Federal and P/T government’s animal disease control policies continue to divert known CWD-infected animals away from entering the food and feed supply, research and development of sensitive detection methods including live-animal sampling techniques remain crucial for ensuring an accurate diagnosis. In addition, consistent federal, provincial and territorial communications of appropriate precautionary measures for hunters and indigenous communities are required. 

Next Steps

The CFlA will continue to collaborate with national and international partners to develop and validate new diagnostic techniques. The CFlA will also continue to offer confirmatory testing services and reference laboratory expertise to provincial and territorial partners on demand. 

Currently, CFlA laboratories are leading or collaborating on several research projects to understand the potential for CWD to infect humans. These projects use non‐human primates, genetically modified mice, and cell-free amplification approaches. Given the present findings, CFiA encourages continued research into TSEs. 

The results of this study reinforce the need to redesign the federal program to foster greater adoption of risk mitigation measures for farmed cervids. Federal and provincial government collaboration will continue as new program options are assessed. 

The results of Dr. Czub’s research into CWD will be of interest to scientists, governments, industry and people who consume cervid products. After the presentation at PRION 2017, the research will follow the normal steps of completion, peer review and publication. The Government of Canada will monitor the response to this research and determine whether further review of the science is required. Other studies underway by other researchers may also become public as a result of the presentation of Dr. Czub’s research. 

The Public Health Agency of Canada, Health Canada, CFlA and other Federal partners are working together to assess what policies or programs need further review as well as preparing other communications about the research and health policy and advice to Canadian. 2017/04/28 

===end...UNOFFICIAL...NO URL LINK...TSS===

0:30 First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress 

Dr Stefanie Czub University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency Canada 


WEDNESDAY, MAY 03, 2017

*** First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques



seems if my primitive education does not fail me, intracranial means inside the skull, and peroral means by the mouth. seems the price of tse prion poker just keeps going up...terry

Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES

Location: Virus and Prion Research

Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease

Author item Moore, Sarah item Kunkle, Robert item Kondru, Naveen item Manne, Sireesha item Smith, Jodi item Kanthasamy, Anumantha item West Greenlee, M item Greenlee, Justin

Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 3/15/2017 Publication Date: N/A Citation: N/A Interpretive Summary:

Technical Abstract: Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study, neurological signs consistent with prion disease were observed only in one pig: an intracranially challenged pig that was euthanized at 64 months post-challenge. The purpose of this study was to use an antigen-capture immunoassay (EIA) and real-time quaking-induced conversion (QuIC) to determine whether PrPSc is present in lymphoid tissues from pigs challenged with the CWD agent.

Methods: At two months of age, crossbred pigs were challenged by the intracranial route (n=20), oral route (n=19), or were left unchallenged (n=9). At approximately 6 months of age, the time at which commercial pigs reach market weight, half of the pigs in each group were culled (<6 challenge="" groups="" month="" pigs="" remaining="" the="">6 month challenge groups) were allowed to incubate for up to 73 months post challenge (mpc). The retropharyngeal lymph node (RPLN) was screened for the presence of PrPSc by EIA and immunohistochemistry (IHC). The RPLN, palatine tonsil, and mesenteric lymph node (MLN) from 6-7 pigs per challenge group were also tested using EIA and QuIC.

Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 5="" 6="" at="" by="" detected="" eia.="" examined="" group="" in="" intracranial="" least="" lymphoid="" month="" months="" of="" one="" pigs="" positive="" prpsc="" quic="" the="" tissues="" was="">6 months group, 5/6 pigs in the oral <6 4="" and="" group="" months="" oral="">6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). Conclusions:

This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge.

CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease.

Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.


CONFIDENTIAL

EXPERIMENTAL PORCINE SPONGIFORM ENCEPHALOPATHY

While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...


 we cannot rule out the possibility that unrecognised subclinical spongiform encephalopathy could be present in British pigs though there is no evidence for this: only with parenteral/implantable pharmaceuticals/devices is the theoretical risk to humans of sufficient concern to consider any action.


 Our records show that while some use is made of porcine materials in medicinal products, the only products which would appear to be in a hypothetically ''higher risk'' area are the adrenocorticotrophic hormone for which the source material comes from outside the United Kingdom, namely America China Sweden France and Germany. The products are manufactured by Ferring and Armour. A further product, ''Zenoderm Corium implant'' manufactured by Ethicon, makes use of porcine skin - which is not considered to be a ''high risk'' tissue, but one of its uses is described in the data sheet as ''in dural replacement''. This product is sourced from the United Kingdom.....


 snip...see much more here ;

WEDNESDAY, APRIL 05, 2017

Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease


TUESDAY, APRIL 18, 2017 

*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP ***


Wednesday, May 24, 2017 

PRION2017 CONFERENCE VIDEO UPDATE 23 – 26 May 2017 Edinburgh UPDATE 1 

Subject: PRION2017 CONFERENCE VIDEO UPDATE 23 – 26 May 2017 Edinburgh

*see archives of previous Prion Conferences, the ones that are still available, scroll down towards bottom in this link.


MONDAY, JUNE 19, 2017 

PRION 2017 P20 Descriptive epidemiology of human prion diseases in Japan: a prospective 16-year surveillance study

Japan Prion Disease Increasing Annually to 2.3 patients per 1 million populations in 2014

http://creutzfeldt-jakob-disease.blogspot.com/2017/06/prion-2017-p20-descriptive-epidemiology.html

FRIDAY, JUNE 16, 2017

PRION 2017 P55 Susceptibility of human prion protein to in vitro conversion by chronic wasting disease prions


FRIDAY, JUNE 16, 2017

P55 Susceptibility of human prion protein to in vitro conversion by chronic wasting disease prions


TUESDAY, JUNE 13, 2017

PRION 2017 CONFERENCE ABSTRACT Chronic Wasting Disease in European moose is associated with PrPSc features different from North American CWD


TUESDAY, JUNE 13, 2017

PRION 2017 CONFERENCE ABSTRACT Chronic Wasting Disease in European moose is associated with PrPSc features different from North American CWD


Saturday, June 17, 2017

PRION 2017 P115 α- Synuclein prions from MSA patients exhibit similar transmission properties as PrPSc prions


SATURDAY, JUNE 10, 2017

Chronic Wasting Disease CWD TSE Prion to Humans, who makes that final call, when, or, has it already happened?


FRIDAY, JUNE 02, 2017

Alberta Canada Chronic Wasting Disease (CWD) Surveillance Update: 2016/17 Final


MONDAY, MAY 29, 2017 

Canada CCA optimistic over potential for revisions to OIE criteria for BSE negligible risk


WEDNESDAY, MAY 31, 2017

Texas New Exotic CWD Susceptible Species Rules Now in Effect


WEDNESDAY, MAY 17, 2017

CWD, TSE, PRION, Cattle, Pigs, Sheep, and Humans aka Mad Cow Disease


*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
http://www.tandfonline.com/doi/full/10.4161/pri.28124?src=recsys

http://www.tandfonline.com/doi/pdf/10.4161/pri.28124?needAccess=true

The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).

There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).

The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).

snip...

It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).

snip...

In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...

snip...

In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)

snip...see full report ;

http://collections.europarchive.org...einquiry.gov.uk/files/yb/1994/08/00004001.pdf

you can see more evidence here ;

http://chronic-wasting-disease.blogspot.com/2016/05/zoonotic-potential-of-cwd-prions-update.html

really, i would not care what anyone eats. if you want to eat cwd infected deer elk or any cervid, that would be your risk to take, should not bother me. BUT, when it starts to risk my family, my children, friends, that have some sort of medical procedure done, surgery, dental, tissue, blood, etc. then that exposure of cwd to humans by consumption goes on to risk other humans that may never have eaten cervid. now is the time to act folks, we have floundered and pass this down the line long enough now it's catching up, and it may be too late. the incubation period here is what is fooling everyone. same thing happened with scrapie, until now, we know scrapie is risk to humans, this is scientific facts, ignore them if you must, but know this, you are playing with fire folks...don't take my word on it. read the science, and then make you minds up if your gonna risk your loved ones with this. it's like playing russian roulette... 

Research Article

Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery.

  1. C J Gibbs, Jr,
  2. D M Asher,
  3. A Kobrine,
  4. H L Amyx,
  5. M P Sulima,
  6. D C Gajdusek
Author affiliations

Abstract
Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them.

http://dx.doi.org/10.1136/jnnp.57.6.757

0:30 First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress 

Dr Stefanie Czub University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency Canada 

http://prion2017.org/programme/

''in this project, which began in 2009, 18 macaques were exposed to CWD in a variety of ways: 

by injecting into the brain, through contact with skin, oral administration, and intravenously (into the bloodstream through veins). 

So far, results are available from 5 animals. 

At this point, two animals that were exposed to CWD by direct introduction into the brain, 

one that was administered infected brain material by oral administration and 

two that were given infected muscle by oral administration have become infected with CWD. 

The study is ongoing and testing continues in the remaining animals. The early results will be presented at PRlON 2017, the annual international conference on prion diseases, in Edinburgh, Scotland, May 23 to 26, 2017.'' 

end...tss


CJD9/10022

October 1994

Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane 

BerksWell Coventry CV7 7BZ

Dear Mr Elmhirst,

CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT

Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.

The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.

The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.

The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.

I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all.

http://web.archive.org/web/20030511010117/http://www.bseinquiry.gov.uk/files/yb/1994/10/00003001.pdf

2009

7 Section Contents Menu 

Recalls, Market Withdrawals, & Safety Alerts

8 Archive for Recalls, Market Withdrawals & Safety Alerts

9 2009

10 Recall -- Firm Press Release . 

Exotic Meats USA Announces Urgent Statewide Recall of Elk Tenderloin Because It May Contain Meat Derived From An Elk Confirmed To Have Chronic Wasting Disease Contact: Exotic Meats USA 1-800-680-4375 

FOR IMMEDIATE RELEASE -- February 9, 2009 -- Exotic Meats USA of San Antonio, TX is initiating a voluntary recall of Elk Tenderloin because it may contain meat derived from an elk confirmed to have Chronic Wasting Disease (CWD). The meat with production dates of December 29, 30 and 31, 2008 was purchased from Sierra Meat Company in Reno, NV. 

The infected elk came from Elk Farm LLC in Pine Island, MN and was among animals slaughtered and processed at USDA facility Noah’s Ark Processors LLC. Chronic Wasting Disease (CWD) is a fatal brain and nervous system disease found in elk and deer. 

The disease is caused by an abnormally shaped protein called a prion, which can damage the brain and nerves of animals in the deer family. 

Currently, it is believed that the prion responsible for causing CWD in deer and elk is not capable of infecting humans who eat deer or elk contaminated with the prion, but the observation of animal-to-human transmission of other prion-mediated diseases, such as bovine spongiform encephalopathy (BSE), has raised a theoretical concern regarding the transmission of CWD from deer or elk to humans. 

At the present time, FDA believes the risk of becoming ill from eating CWD-positive elk or deer meat is remote. 

However, FDA strongly advises consumers to return the product to the place of purchase, rather than disposing of it themselves, due to environmental concerns. 


Thursday, May 26, 2011 

Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 

FoodNet Population Survey Journal of the American Dietetic Association Volume 111, Issue 6 , Pages 858-863, June 2011. 


Elk meat recalled due to CWD Boulder County Health Department and Colorado Department of Public Health and Environment Warning out on elk meat sold at Boulder farmer's market

By Kevin Vaughan, Rocky Mountain News (Contact) Published December 25, 2008 at 12:05 a.m.

State health officials issued a warning Wednesday after learning that unsuspecting consumers bought hundreds of pounds of elk meat this month from an animal infected with chronic wasting disease.

The elk was sold Dec. 13 at a farmer's market at the Boulder County Fairgrounds.

Although research has found no risk to humans who eat infected elk, officials at the state and Boulder County health departments recommended that the meat not be consumed.

"There's been now 10 years- plus of research looking at whether CWD poses a human health risk, and the evidence to date suggests it does not," said John Pape, epidemiologist at the Colorado Department of Health and Environment.

Still, he said, the research is not definitive.

In all, 15 animals purchased at a commercial Colorado elk ranch were processed in early December at a USDA-licensed plant. All those animals were tested for the disease.

Test results obtained Tuesday indicated that one of the animals was infected with CWD, one of several diseases thought to be caused by misshaped proteins that inflict damage to nerve cells in the brain. It is a cousin to both crapie in sheep and mad cow disease.

Label information

On infected elk meat:

* Seller: High Wire Ranch

* Cuts: chuck roast, arm roast, flat iron, ribeye steak, New York steak, tenderloin, sirloin tip roast, medallions and ground meat.

* Processor: Cedaredge Processing

* USDA triangle number: 34645

For more information, contact John Pape, Colorado Department of Health and Environment, 303-692-2628. 


 Elk meat recalled due to wasting disease

Publish Date: 12/24/2008

Longmont Times-Call

LONGMONT — Meat from an elk with chronic wasting disease was sold Dec. 13 at the Boulder County Fairgrounds, according to the Colorado Department of Public Health and Environment. The meat is being recalled.

State health officials said the animal was one of 15 elk purchased from High Wire Ranch and processed in early December before being sold at a farmers market at the fairgrounds. The disease was found during a routine preliminary test for CWD; none of the other 14 elk were deemed to be infected.

CWD is not known to be dangerous to humans, health officials said, but the state advises against eating meat from animals with the disease.

The labeling on the meat would include:

• Seller: High Wire Ranch • The type of cut, listed as either “chuck roast,” “arm roast,” “flat iron,” “ribeye steak,” “New York steak,” “tenderloin,” “sirloin tip roast,” “medallions” or “ground meat.”

• Processor: Ceaderedge Processing • A USDA triangle with the number 34645. Final testing is still being conducted. State officials said the meat should be discarded if it matches the packaging label and was bought on the fairgrounds on Dec. 13.

CWD is a disease believed to be caused by prions, misshapen proteins that cause brain damage. The disease affects elk, deer and moose. Other prion diseases include scrapie in sheep and bovine spongiform encephalopathy or “mad cow disease” in cattle.

People with questions about the meat can contact John Pape of the state health department at 303-692-2628. 


 COLORADO: Farmer's market meat recalled after testing positive for CWD

24.dec.08 9News.com Jeffrey Wolf

Elk meat that was sold at a farmer's market is being recalled because tests show it was infected with chronic wasting disease. The Boulder County Health Department and Colorado Department of Public Health and Environment issued the recall Wednesday after the meat was sold at the Boulder County Fairgrounds on Dec. 13. Although there isn't any human health risk connected with CWD, the recalled was issued as a precaution. About 15 elk were bought from a commercial ranch in Colorado in early December and processed at a licensed plant. All 15 were tested for CWD and one came up positive. The labeling on the product would have the following information: *Seller: High Wire Ranch *The type of cut: "chuck roast," "arm roast," "flat iron," "ribeye steak," "New York steak," "tenderloin," "sirloin tip roast," "medallions" or "ground meat." *Processor: Cedaredge Processing *The USDA triangle containing the number "34645" People with questions about this meat can contact John Pape, epidemiologist at the Colorado Department of Public Health and Environment at 303-692-2628. 


COULD NOT FIND any warning or recalls on these two sites confirming their recall of CWD infected meat. ...TSS 




Envt.07: 

Pathological Prion Protein (PrPTSE) in Skeletal Muscles of Farmed and Free Ranging White-Tailed Deer Infected with Chronic Wasting Disease 

***The presence and seeding activity of PrPTSE in skeletal muscle from CWD-infected cervids suggests prevention of such tissue in the human diet as a precautionary measure for food safety, pending on further clarification of whether CWD may be transmissible to humans. 

Yet, it has to be noted that our assessments of PrPTSE levels in skeletal muscles were based on findings in presumably pre- or subclinically infected animals. Therefore, the concentration of PrPTSE in skeletal muscles of WTD with clinically manifest CWD may possibly exceed our estimate which refers to clinically inconspicuous animals that are more likely to enter the human food chain. Our tissue blot findings in skeletal muscles from CWD-infected WTD would be consistent with an anterograde spread of CWD prions via motor nerve fibres to muscle tissue (figure 4A). Similar neural spreading pathways of muscle infection were previously found in hamsters orally challenged with scrapie [28] and suggested by the detection of PrPTSE in muscle fibres and muscle-associated nerve fascicles of clinically-ill non-human primates challenged with BSE prions [29]. Whether the absence of detectable PrPTSE in myofibers observed in our study is a specific feature of CWD in WTD, or was due to a pre- or subclinical stage of infection in the examined animals, remains to be established. In any case, our observations support previous findings suggesting the precautionary prevention of muscle tissue from CWD-infected WTD in the human diet, and highlight the need to comprehensively elucidate of whether CWD may be transmissible to humans. While the understanding of TSEs in cervids has made substantial progress during the past few years, the assessment and management of risks possibly emanating from prions in skeletal muscles of CWD-infected cervids requires further research. 



Prions in Skeletal Muscles of Deer with Chronic Wasting Disease 

Rachel C. Angers1,*, Shawn R. Browning1,*,†, Tanya S. Seward2, Christina J. Sigurdson4,‡, Michael W. Miller5, Edward A. Hoover4, Glenn C. Telling1,2,3,§ + Author Affiliations

1 Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA. 2 Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA. 3 Department of Neurology, University of Kentucky, Lexington, KY 40536, USA. 4 Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA. 5 Colorado Division of Wildlife, Wildlife Research Center, Fort Collins, CO 80526, USA. ↵§ To whom correspondence should be addressed. E-mail: gtell2@uky.edu ↵* These authors contributed equally to this work. 

↵† Present address: Department of Infectology, Scripps Research Institute, 5353 Parkside Drive, RF-2, Jupiter, FL 33458, USA. 

↵‡ Present address: Institute of Neuropathology, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland. 

Abstract The emergence of chronic wasting disease (CWD) in deer and elk in an increasingly wide geographic area, as well as the interspecies transmission of bovine spongiform encephalopathy to humans in the form of variant Creutzfeldt Jakob disease, have raised concerns about the zoonotic potential of CWD. Because meat consumption is the most likely means of exposure, it is important to determine whether skeletal muscle of diseased cervids contains prion infectivity. Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure. 


Wednesday, April 06, 2011 

Presence and Seeding Activity of Pathological Prion Protein (PrPTSE) in Skeletal Muscles of White-Tailed Deer Infected with Chronic Wasting Disease 


Prion Infectivity in Fat of Deer with Chronic Wasting Disease

Brent Race,# Kimberly Meade-White,# Richard Race, and Bruce Chesebro* Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, Montana 59840

Received 2 June 2009/ Accepted 24 June 2009

ABSTRACT Top ABSTRACT TEXT REFERENCES

Chronic wasting disease (CWD) is a neurodegenerative prion disease of cervids. Some animal prion diseases, such as bovine spongiform encephalopathy, can infect humans; however, human susceptibility to CWD is unknown. In ruminants, prion infectivity is found in central nervous system and lymphoid tissues, with smaller amounts in intestine and muscle. In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.

snip...

The highest risk of human contact with CWD might be through exposure to high-titer CNS tissue through accidental skin cuts or corneal contact at the time of harvest and butchering. However, the likelihood of a human consuming fat infected with a low titer of the CWD agent is much higher. It is impossible to remove all the fat present within muscle tissue, and fat consumption is inevitable when eating meat. Of additional concern is the fact that meat from an individual deer harvested by a hunter is typically consumed over multiple meals by the same group of people. These individuals would thus have multiple exposures to the CWD agent over time, which might increase the chance for transfer of infection.

In the Rocky Mountain region of North America, wild deer are subject to predation by wolves, coyotes, bears, and mountain lions. Although canines such as wolves and coyotes are not known to be susceptible to prion diseases, felines definitely are susceptible to BSE (9) and might also be infected by the CWD agent. Deer infected with the CWD agent are more likely to be killed by predators such as mountain lions (11). Peripheral tissues, including lymph nodes, muscle, and fat, which harbor prion infectivity are more accessible for consumption than CNS tissue, which has the highest level of infectivity late in disease. Therefore, infectivity in these peripheral tissues may be important in potential cross-species CWD transmissions in the wild.

The present finding of CWD infectivity in deer fat tissue raises the possibility that prion infectivity might also be found in fat tissue of other infected ruminants, such as sheep and cattle, whose fat and muscle tissues are more widely distributed in both the human and domestic-animal food chains. Although the infectivity in fat tissues is low compared to that in the CNS, there may be significant differences among species and between prion strains. Two fat samples from BSE agent-infected cattle were reported to be negative by bioassay in nontransgenic RIII mice (3, 6). However, RIII mice are 10,000-fold-less sensitive to BSE agent infection than transgenic mice expressing bovine PrP (4). It would be prudent to carry out additional infectivity assays on fat from BSE agent-infected cattle and scrapie agent-infected sheep using appropriate transgenic mice or homologous species to determine the risk from these sources.


0C7.04

North American Cervids Harbor Two Distinct CWD Strains

Authors

Angers, R. Seward, T, Napier, D., Browning, S., Miller, M., Balachandran A., McKenzie, D., Hoover, E., Telling, G. 'University of Kentucky; Colorado Division of Wildlife, Canadian Food Inspection Agency; University Of Wisconsin; Colorado State University.

Content

Despite the increasing geographic distribution and host range of CWD, little is known about the prion strain(s) responsible for distinct outbreaks of the disease. To address this we inoculated CWD-susceptible Tg(CerPrP)1536+/· mice with 29 individual prion samples from various geographic locations in North America. Upon serial passage, intrastudy incubation periods consistently diverged and clustered into two main groups with means around 210 and 290 days, with corresponding differences in neuropathology. Prion strain designations were utilized to distinguish between the two groups: Type I CWD mice succumbed to disease in the 200 day range and displayed a symmetrical pattern of vacuolation and PrPSc deposition, whereas Type II CWD mice succumbed to disease near 300 days and displayed a strikingly different pattern characterized by large local accumulations of florid plaques distributed asymmetrically. Type II CWD bears a striking resemblance to unstable parental scrapie strains such as 87A which give rise to stable, short incubation period strains such as ME7 under certain passage conditions. In agreement, the only groups of CWD-inoculated mice with unwavering incubation periods were those with Type I CWD. Additionally, following endpoint titration of a CWD sample, Type I CWD could be recovered only at the lowest dilution tested (10-1), whereas Type II CWD was detected in mice inoculated with all dilutions resulting in disease. Although strain properties are believed to be encoded in the tertiary structure of the infectious prion protein, we found no biochemical differences between Type I and Type II CWD. Our data confirm the co·existence of two distinct prion strains in CWD-infected cervids and suggest that Type II CWD is the parent strain of Type I CWD.

see page 29, and see other CWD studies ;


Sunday, November 23, 2008

PRION October 8th - 10th 2008 Book of Abstracts


ADAPTATION OF CHRONIC WASTING DISEASE (CWD) INTO HAMSTERS, EVIDENCE OF A WISCONSIN STRAIN OF CWD

Chad Johnson1, Judd Aiken2,3,4 and Debbie McKenzie4,5 1 Department of Comparative Biosciences, University of Wisconsin, Madison WI, USA 53706 2 Department of Agriculture, Food and Nutritional Sciences, 3 Alberta Veterinary Research Institute, 4.Center for Prions and Protein Folding Diseases, 5 Department of Biological Sciences, University of Alberta, Edmonton AB, Canada T6G 2P5

The identification and characterization of prion strains is increasingly important for the diagnosis and biological definition of these infectious pathogens. Although well-established in scrapie and, more recently, in BSE, comparatively little is known about the possibility of prion strains in chronic wasting disease (CWD), a disease affecting free ranging and captive cervids, primarily in North America. We have identified prion protein variants in the white-tailed deer population and demonstrated that Prnp genotype affects the susceptibility/disease progression of white-tailed deer to CWD agent. The existence of cervid prion protein variants raises the likelihood of distinct CWD strains. Small rodent models are a useful means of identifying prion strains. We intracerebrally inoculated hamsters with brain homogenates and phosphotungstate concentrated preparations from CWD positive hunter-harvested (Wisconsin CWD endemic area) and experimentally infected deer of known Prnp genotypes. These transmission studies resulted in clinical presentation in primary passage of concentrated CWD prions. Subclinical infection was established with the other primary passages based on the detection of PrPCWD in the brains of hamsters and the successful disease transmission upon second passage. Second and third passage data, when compared to transmission studies using different CWD inocula (Raymond et al., 2007) indicate that the CWD agent present in the Wisconsin white-tailed deer population is different than the strain(s) present in elk, mule-deer and white-tailed deer from the western United States endemic region.


now, let’s see what the authors said about this casual link, personal communications years ago. see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans” 

From: TSS (216-119-163-189.ipset45.wt.net)

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

Sent: Monday, September 30, 2002 9:22 AM

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Dear Sir/Madam,

In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

Ermias Belay, M.D. Centers for Disease Control and Prevention

-----Original Message-----

From: Sent: Sunday, September 29, 2002 10:15 AM

To: rr26k@nih.govrrace@niaid.nih.govebb8@CDC.GOV

Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS

Thursday, April 03, 2008

A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.

snip...

*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,

snip... full text ;

http://chronic-wasting-disease.blogspot.com/2008/04/prion-disease-of-cervids-chronic.html

*** WDA 2016 NEW YORK ***
We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions.
In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species.
We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions.
Student Presentations Session 2
The species barriers and public health threat of CWD and BSE prions
Ms. Kristen Davenport1, Dr. Davin Henderson1, Dr. Candace Mathiason1, Dr. Edward Hoover1 1Colorado State University
Chronic wasting disease (CWD) is spreading rapidly through cervid populations in the USA. Bovine spongiform encephalopathy (BSE, mad cow disease) arose in the 1980s because cattle were fed recycled animal protein. These and other prion diseases are caused by abnormal folding of the normal prion protein (PrP) into a disease causing form (PrPd), which is pathogenic to nervous system cells and can cause subsequent PrP to misfold. CWD spreads among cervids very efficiently, but it has not yet infected humans. On the other hand, BSE was spread only when cattle consumed infected bovine or ovine tissue, but did infect humans and other species. The objective of this research is to understand the role of PrP structure in cross-species infection by CWD and BSE. To study the propensity of each species’ PrP to be induced to misfold by the presence of PrPd from verious species, we have used an in vitro system that permits detection of PrPd in real-time. We measured the conversion efficiency of various combinations of PrPd seeds and PrP substrate combinations. We observed the cross-species behavior of CWD and BSE, in addition to feline-adapted CWD and BSE. We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species.
***We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions.
CWD is unique among prion diseases in its rapid spread in natural populations. BSE prions are essentially unaltered upon passage to a new species, while CWD adapts to the new species. This adaptation has consequences for surveillance of humans exposed to CWD.
Wildlife Disease Risk Communication Research Contributes to Wildlife Trust Administration Exploring perceptions about chronic wasting disease risks among wildlife and agriculture professionals and stakeholders
PRION 2016 TOKYO
Zoonotic Potential of CWD Prions: An Update
Chronic wasting disease (CWD) is a widespread and highly transmissible prion disease in free-ranging and captive cervid species in North America. The zoonotic potential of CWD prions is a serious public health concern, but the susceptibility of human CNS and peripheral organs to CWD prions remains largely unresolved. We reported earlier that peripheral and CNS infections were detected in transgenic mice expressing human PrP129M or PrP129V. Here we will present an update on this project, including evidence for strain dependence and influence of cervid PrP polymorphisms on CWD zoonosis as well as the characteristics of experimental human CWD prions.
PRION 2016 TOKYO In Conjunction with Asia Pacific Prion Symposium 2016 PRION 2016 Tokyo Prion 2016
Cervid to human prion transmission
Kong, Qingzhong
Case Western Reserve University, Cleveland, OH, United States
Abstract
Prion disease is transmissible and invariably fatal. Chronic wasting disease (CWD) is the prion disease affecting deer, elk and moose, and it is a widespread and expanding epidemic affecting 22 US States and 2 Canadian provinces so far. CWD poses the most serious zoonotic prion transmission risks in North America because of huge venison consumption (>6 million deer/elk hunted and consumed annually in the USA alone), significant prion infectivity in muscles and other tissues/fluids from CWD-affected cervids, and usually high levels of individual exposure to CWD resulting from consumption of the affected animal among often just family and friends. However, we still do not know whether CWD prions can infect humans in the brain or peripheral tissues or whether clinical/asymptomatic CWD zoonosis has already occurred, and we have no essays to reliably detect CWD infection in humans. We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues; 

(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence; 

(3) Reliable essays can be established to detect CWD infection in humans; and 

(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.
Aim 1 will prove that the classical CWD strain may infect humans in brain or peripheral lymphoid tissues at low levels by conducting systemic bioassays in a set of "humanized" Tg mouse lines expressing common human PrP variants using a number of CWD isolates at varying doses and routes. Experimental "human CWD" samples will also be generated for Aim 3. 

Aim 2 will test the hypothesis that the cervid-to-human prion transmission barrier is dependent on prion strain and influenced by the host (human) PrP sequence by examining and comparing the transmission efficiency and phenotypes of several atypical/unusual CWD isolates/strains as well as a few prion strains from other species that have adapted to cervid PrP sequence, utilizing the same panel of humanized Tg mouse lines as in Aim 1. 

Aim 3 will establish reliable essays for detection and surveillance of CWD infection in humans by examining in details the clinical, pathological, biochemical and in vitro seeding properties of existing and future experimental "human CWD" samples generated from Aims 1-2 and compare them with those of common sporadic human Creutzfeldt-Jakob disease (sCJD) prions. 

Aim 4 will attempt to detect clinical CWD-affected human cases by examining a significant number of brain samples from prion-affected human subjects in the USA and Canada who have consumed venison from CWD-endemic areas utilizing the criteria and essays established in Aim 3. The findings from this proposal will greatly advance our understandings on the potential and characteristics of cervid prion transmission in humans, establish reliable essays for CWD zoonosis and potentially discover the first case(s) of CWD infection in humans. 

Public Health Relevance There are significant and increasing human exposure to cervid prions because chronic wasting disease (CWD, a widespread and highly infectious prion disease among deer and elk in North America) continues spreading and consumption of venison remains popular, but our understanding on cervid-to-human prion transmission is still very limited, raising public health concerns. This proposal aims to define the zoonotic risks of cervid prions and set up and apply essays to detect CWD zoonosis using mouse models and in vitro methods. The findings will greatly expand our knowledge on the potentials and characteristics of cervid prion transmission in humans, establish reliable essays for such infections and may discover the first case(s) of CWD infection in humans. 
Key Molecular Mechanisms of TSEs
Zabel, Mark D.
Colorado State University-Fort Collins, Fort Collins, CO, United States
Abstract Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative diseases affecting humans, cervids, bovids, and ovids. The absolute requirement of PrPC expression to generate prion diseases and the lack of instructional nucleic acid define prions as unique infectious agents. Prions exhibit species-specific tropism, inferring that unique prion strains exist that preferentially infct certain host species and confront transmission barriers to heterologous host species. However, transmission barriers are not absolute. Scientific consensus agrees that the sheep TSE scrapie probably breached the transmission barrier to cattle causing bovine spongiform encephalopathy that subsequently breached the human transmission barrier and likely caused several hundred deaths by a new-variant form of the human TSE Creutzfeldt-Jakob disease in the UK and Europe. The impact to human health, emotion and economies can still be felt in areas like farming, blood and organ donations and the threat of a latent TSE epidemic. This precedent raises the real possibility of other TSEs, like chronic wasting disease of cervids, overcoming similar human transmission barriers. A groundbreaking discovery made last year revealed that mice infected with heterologous prion strains facing significant transmission barriers replicated prions far more readily in spleens than brains6. Furthermore, these splenic prions exhibited weakened transmission barriers and expanded host ranges compared to neurogenic prions. These data question conventional wisdom of avoiding neural tissue to avoid prion xenotransmission, when more promiscuous prions may lurk in extraneural tissues. Data derived from work previously funded by NIH demonstrate that Complement receptors CD21/35 bind prions and high density PrPC and differentially impact prion disease depending on the prion isolate or strain used. Recent advances in live animal and whole organ imaging have led us to generate preliminary data to support novel, innovative approaches to assessing prion capture and transport. We plan to test our unifying hypothesis for this proposal that CD21/35 control the processes of peripheral prion capture, transport, strain selection and xenotransmission in the following specific aims.
1. Assess the role of CD21/35 in splenic prion strain selection and host range expansion.
2. Determine whether CD21/35 and C1q differentially bind distinct prion strains
3. Monitor the effects of CD21/35 on prion trafficking in real time and space
4. Assess the role of CD21/35 in incunabular prion trafficking
Public Health Relevance Transmissible spongiform encephalopathies, or prion diseases, are devastating illnesses that greatly impact public health, agriculture and wildlife in North America and around the world. The impact to human health, emotion and economies can still be felt in areas like farming, blood and organ donations and the threat of a latent TSE epidemic. This precedent raises the real possibility of other TSEs, like chronic wasting disease (CWD) of cervids, overcoming similar human transmission barriers. Early this year Canada reported its first case of BSE in over a decade audits first case of CWD in farmed elk in three years, underscoring the need for continued vigilance and research. Identifying mechanisms of transmission and zoonoses remains an extremely important and intense area of research that will benefit human and other animal populations.
PMCA Detection of CWD Infection in Cervid and Non-Cervid Species
Hoover, Edward Arthur
Colorado State University-Fort Collins, Fort Collins, CO, United States
LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***


Molecular Barriers to Zoonotic Transmission of Prions

 *** chronic wasting disease, there was no absolute barrier to conversion of the human prion protein.

 *** Furthermore, the form of human PrPres produced in this in vitro assay when seeded with CWD, resembles that found in the most common human prion disease, namely sCJD of the MM1 subtype.



SATURDAY, MAY 20, 2017

Missouri CWD TSE PRION Surveillance and Monitoring


THURSDAY, MARCH 09, 2017 

Missouri MDC REPORTS TWO CASES OF CWD IN ST. CLAIR COUNTY 


Tuesday, August 16, 2016
Docket No. FDA-2011-D-0376 Dietary Supplements: New Dietary Ingredient Notifications and Related Issues; Revised Draft Guidance for Industry Singeltary Submission

SPONTANEOUS ATYPICAL BOVINE SPONGIFORM ENCEPHALOPATHY

***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Saturday, April 23, 2016 

PRION 2016 TOKYO Saturday, April 23, 2016 

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016 Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online Taylor & Francis Prion 2016 Animal Prion Disease Workshop 

Abstracts 

WS-01: Prion diseases in animals and zoonotic potential 

Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a, Natalia Fernandez-Borges a. and Alba Marin-Moreno a "Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France 

Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion. Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier. To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents. These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant. Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.


Title: Transmission of scrapie prions to primate after an extended silent incubation period) *** 

In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 


SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016 

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online 



O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 

Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 


LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ 

*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).*** 




*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, ***

*** and there may be asymptomatic individuals infected with the CWD equivalent. 

*** These circumstances represent a potential threat to blood, blood products, and plasma supplies. 


SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online




why do we not want to do TSE transmission studies on chimpanzees $ 

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis. 

snip... 

R. BRADLEY 


Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES
TUESDAY, JUNE 13, 2017

Pennsylvania Chronic Wasting Disease CWD TSE PRION Senate Joint Hearing Tuesday, June 13, 2017


MONDAY, JUNE 05, 2017 

Arkansas CWD Management Zone expands to include Van Buren County 213 cases to date 


SUNDAY, MAY 21, 2017 

Arkansas Chronic Wasting Disease CWD TSE Prion Roundup 212 Cases Confirmed To Date 


THURSDAY, MAY 18, 2017
Minnesota Four more farmed white-tailed deer test positive for Chronic Wasting Disease CWD TSE Prion


MONDAY, MARCH 27, 2017 

Wyoming CWD Postive Mule Deer Doe Near Pinedale 


MONDAY, MARCH 20, 2017 

Wisconsin CWD TSE Prion Annual Roundup 441 positive 


SATURDAY, JUNE 17, 2017

Iowa DNR issues statement on Iowa Supreme Court Ruling


TUESDAY, MARCH 14, 2017 

Iowa 12 deer test positive for chronic wasting disease from 2016-17 hunting seasons 


MONDAY, MARCH 13, 2017 

CHRONIC WASTING DISEASE CWD TSE PRION UDATE March 13, 2017 


FRIDAY, MARCH 10, 2017 

Nebraska Tests confirm spread of CWD to Lancaster County 


SATURDAY, MAY 20, 2017

Missouri CWD TSE PRION Surveillance and Monitoring


THURSDAY, MARCH 09, 2017 

Missouri MDC REPORTS TWO CASES OF CWD IN ST. CLAIR COUNTY 


SATURDAY, MARCH 04, 2017 

Maryland DNR Six Deer Test Positive for Chronic Wasting Disease 


THURSDAY, JUNE 01, 2017

PENNSYLVANIA Third Case of CWD Discovered in a Captive Deer Farm in Four Months


WEDNESDAY, MARCH 01, 2017 

South central Pennsylvania Captive Deer Tests Positive for Chronic Wasting Disease 


MONDAY, MAY 15, 2017 

Pennsylvania 25 more deer test positive for CWD TSE PRION in the wild


WEDNESDAY, MAY 31, 2017

Texas New Exotic CWD Susceptible Species Rules Now in Effect


MONDAY, MAY 15, 2017 

TEXAS New CWD TSE PRION Case Discovered at Fifth Captive Deer Breeding Facility


SUNDAY, MAY 14, 2017 

85th Legislative Session 2017 AND THE TEXAS TWO STEP Chronic Wasting Disease CWD TSE Prion, and paying to play


FRIDAY, MARCH 31, 2017 

TPWD UPDATE CWD TSE Prion 49 confirmed cases and unwanted firsts for Texas 


MONDAY, MARCH 13, 2017 

CHRONIC WASTING DISEASE CWD TSE PRION UDATE March 13, 2017 


SATURDAY, JANUARY 14, 2017 

CHRONIC WASTING DISEASE CWD TSE PRION GLOBAL UPDATE JANUARY 14, 2017 


WEDNESDAY, MAY 17, 2017

CWD, TSE, PRION, Cattle, Pigs, Sheep, and Humans aka Mad Cow Disease



Passage of scrapie to deer results in a new phenotype upon return passage to sheep


Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies

Location: Virus and Prion Research

Title: Passage of scrapie to deer results in a new phenotype upon return passage to sheep)
Author 

item Greenlee, Justin
item Kokemuller, Robyn
item Moore, Sarah
item West Greenlee, N

Submitted to: Prion 

Publication Type: Abstract Only 

Publication Acceptance Date: 3/15/2017 

Publication Date: N/A 

Citation: N/A

Interpretive Summary:

Technical Abstract: Aims: We previously demonstrated that scrapie has a 100% attack rate in white-tailed deer after either intracranial or oral inoculation. Samples from deer that developed scrapie had two different western blot patterns: samples derived from cerebrum had a banding pattern similar to the scrapie inoculum, but samples from brainstem had a banding pattern similar to CWD. In contrast, transmission of CWD from white-tailed deer to sheep by the intracranial route has a low attack rate and to-date oronasal exposure has been unsuccessful. The purpose of this study was to determine if sheep are susceptible to oronasal exposure of the scrapie agent derived from white-tailed deer. 

Methods: At approximately 5 months of age, Suffolk sheep of various PRNP genotypes were challenged by the oronasal route with 10% brain homogenate derived from either the cerebrum or the brainstem of scrapie-affected deer. Genotypes represented in each inoculation group were VV136RR154QQ171 (n=2), AA136RR154QQ171 (n=2), and AV136RR154QR171 (n=1). After inoculation, sheep were observed daily for clinical signs. Upon development of clinical signs, sheep were killed with an overdose of pentobarbital sodium and necropsied. Tissue samples were tested for the presence of PrPSc by EIA, western blot, and immunohistochemistry (IHC). The No. 13-7 scrapie inoculum used for the deer has a mean incubation period of 20.1 months in sheep with the AA136RR154QQ171 genotype and 26.7 months in sheep with the VV136RR154QQ171 genotype. 

Results: Sheep inoculated oronasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum from the cerebrum that had a scrapie-like profile. The first sheep to develop clinical signs at approximately 29 months post inoculation had the VV136RR154QQ171 genotype. Eventually sheep of the AA136RR154QQ171 genotype developed clinical signs, but at a mean incubation of 52 months. At 62 months post-inoculation, none of the sheep inoculated with material from the deer brainstem have developed clinical disease. 

Conclusions: The No. 13-7 inoculum used in the original deer experiment readily infects white-tailed deer and sheep of various genotypes by the oronasal route. When inoculum is made from different brain regions of No 13-7 scrapie-infected deer from either cerebrum with a scrapie-like western blot pattern or brainstem with a CWD-like western blot pattern, sheep with the VV136RR154QQ171 genotype are the first to develop clinical signs. This is in contrast to the original No. 13-7 inoculum that has a faster incubation period in sheep with the AA136RR154QQ171 genotype. Similar to experiments conducted with CWD, sheep oronasally inoculated with brainstem material from deer with a CWD-like molecular profile have no evidence of disease after 62 months of incubation. While scrapie is not known to occur in free-ranging populations of white-tailed deer, experimental cases are difficult to differentiate from CWD. This work raises the potential concern that scrapie infected deer could serve as a confounding factor to scrapie eradication programs as scrapie from deer seems to be transmissible to sheep by the oronasal route.


Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES
Title: Transmission of the agent of sheep scrapie to deer results in PrPSc with two distinct molecular profiles Authors
item Greenlee, Justin item Moore, Sarah - item Smith, Jodi item West Greenlee, Mary - item Kunkle, Robert
Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: March 31, 2015 Publication Date: May 25, 2015 Citation: Greenlee, J., Moore, S.J., Smith, J.., West Greenlee, M.H., Kunkle, R. 2015.
Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease and distinct from the scrapie inoculum. 

Prion 2015. p. S62. 

Technical Abstract: The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n=5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes reveal PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the two inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy. 

In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile type readily passes to deer.
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES
Title: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease Authors
item Greenlee, Justin item Moore, S - item Smith, Jodi - item Kunkle, Robert item West Greenlee, M -
Submitted to: American College of Veterinary Pathologists Meeting Publication Type: Abstract Only Publication Acceptance Date: August 12, 2015 Publication Date: N/A
Technical Abstract: The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n=5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the two inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy. 

In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, two distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
White-tailed Deer are Susceptible to Scrapie by Natural Route of Infection
Jodi D. Smith, Justin J. Greenlee, and Robert A. Kunkle; Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS
Interspecies transmission studies afford the opportunity to better understand the potential host range and origins of prion diseases. Previous experiments demonstrated that white-tailed deer are susceptible to sheep-derived scrapie by intracranial inoculation. The purpose of this study was to determine susceptibility of white-tailed deer to scrapie after a natural route of exposure. Deer (n=5) were inoculated by concurrent oral (30 ml) and intranasal (1 ml) instillation of a 10% (wt/vol) brain homogenate derived from a sheep clinically affected with scrapie. Non-inoculated deer were maintained as negative controls. All deer were observed daily for clinical signs. Deer were euthanized and necropsied when neurologic disease was evident, and tissues were examined for abnormal prion protein (PrPSc) by immunohistochemistry (IHC) and western blot (WB). One animal was euthanized 15 months post-inoculation (MPI) due to an injury. At that time, examination of obex and lymphoid tissues by IHC was positive, but WB of obex and colliculus were negative. Remaining deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 MPI. Tissues from these deer were positive for scrapie by IHC and WB. Tissues with PrPSc immunoreactivity included brain, tonsil, retropharyngeal and mesenteric lymph nodes, hemal node, Peyer’s patches, and spleen. This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by potential natural routes of inoculation. In-depth analysis of tissues will be done to determine similarities between scrapie in deer after intracranial and oral/intranasal inoculation and chronic wasting disease resulting from similar routes of inoculation.
see full text ;
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer
Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation
snip...
It is unlikely that CWD will be eradicated from free-ranging cervids, and the disease is likely to continue to spread geographically [10]. However, the potential that white-tailed deer may be susceptible to sheep scrapie by a natural route presents an additional confounding factor to halting the spread of CWD. This leads to the additional speculations that
1) infected deer could serve as a reservoir to infect sheep with scrapie offering challenges to scrapie eradication efforts and
2) CWD spread need not remain geographically confined to current endemic areas, but could occur anywhere that sheep with scrapie and susceptible cervids cohabitate.
This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by intracerebral inoculation with a high attack rate and that the disease that results has similarities to CWD. These experiments will be repeated with a more natural route of inoculation to determine the likelihood of the potential transmission of sheep scrapie to white-tailed deer. If scrapie were to occur in white-tailed deer, results of this study indicate that it would be detected as a TSE, but may be difficult to differentiate from CWD without in-depth biochemical analysis.
2012
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer
Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
snip...
The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like.
*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.
Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.
2011
*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.
Sunday, October 25, 2015
USAHA Detailed Events Schedule – 119th USAHA Annual Meeting CAPTIVE LIVESTOCK CWD SCRAPIE TSE PRION
Thursday, December 08, 2016

USDA APHIS National Scrapie Eradication Program October 2016 Monthly Report Fiscal Year 2017 atypical NOR-98 Scrapie


TUESDAY, MARCH 28, 2017 

Passage of scrapie to deer results in a new phenotype upon return passage to sheep


MONDAY, APRIL 17, 2017 

Wildlife advocates see wolves as 'best natural defense' against chronic wasting disease

NO WAY! this is an extremely stupid move, and very, very, dangerous... 


MONDAY, MARCH 8, 2010 

Canine Spongiform Encephalopathy aka MAD DOG DISEASE


MONDAY, MAY 29, 2017 

Canada CCA optimistic over potential for revisions to OIE criteria for BSE negligible risk


THURSDAY, OCTOBER 22, 2015 

Former Ag Secretary Ann Veneman talks women in agriculture and we talk mad cow disease USDA and what really happened


SUNDAY, AUGUST 11, 2013 

Creutzfeldt-Jakob Disease CJD cases rising North America updated report August 2013


SATURDAY, MARCH 21, 2015 

Canada and United States Creutzfeldt Jakob TSE Prion Disease Incidence Rates Increasing


MONDAY, AUGUST 22, 2016 

CREUTZFELDT JAKOB DISEASE USA 2015 SPORADIC CJD TOTAL FIGURES REACHES HIGHEST ANNUAL COUNT TO DATE AT 239 CONFIRMED CASES


CBCnews
*** USA sporadic CJD MAD COW DISEASE HAS HUGE PROBLEM Video
*** sporadic CJD linked to mad cow disease
*** you can see video here and interview with Jeff's Mom, and scientist telling you to test everything and potential risk factors for humans ***
 1994-10-13: Scrapie Man
 *** Scrapie Video
 1997-11-10: Panorama - The british disease
 *** Human Mad Cow Video
2009-08-27
PrioNet Canada_Lecture "New Findings in Prion Research"
Prof. Dr. Adriano Aguzzi
Terry S. Singeltary Sr. on the Creutzfeldt-Jakob Disease Public Health Crisis *video*

Diagnosis and Reporting of Creutzfeldt-Jakob Disease 

Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA 

Diagnosis and Reporting of Creutzfeldt-Jakob Disease 

To the Editor: In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally. 

Terry S. Singeltary, Sr Bacliff, Tex 1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323. 



TSS




Links to this post:

Create a Link

<< Home