Thursday, November 19, 2020

NIH 2020 R01 NS Role of skin prions in disease transmission and diagnostic testing of human prion disease

NIH 2020 R01 NS Role of skin prions in disease transmission and diagnostic testing of human prion disease

Role of skin prions in disease transmission and diagnostic testing of human prion disease

Zou, Wen-Quan Kong, Qingzhong 

Case Western Reserve University, Cleveland, OH, United States


Prions (or PrPSc) are the causal agents of fatal transmissible prion diseases including sporadic Creutzfeldt-Jakob disease (sCJD, the most common human prion disease) in humans as well as scrapie, mad cow disease and chronic wasting disease in animals. sCJD is transmissible via medical or surgical procedures due to contamination by abundant infectious prions in the brain of patients. Notably, some epidemiological studies have also associated sCJD risk with non-neurosurgeries but experimental evidence for such a link is lacking. sCJD is currently incurable. At the onset of clinical symptoms, permanent brain damages already occurred. The absence of less invasive early diagnostic tests for the disease can result in missing the critical window for future treatments, and low brain autopsy rate due to cultural constraints prevents the surveillance of sCJD that is essential for effective prevention of iatrogenic sCJD transmissions. Our recent study using the highly sensitive real-time quaking-induced conversion (RT- QuIC) assay and humanized transgenic (Tg) mice-based bioassay revealed that the skin of sCJD patients harbors infectious prions (Orr et al., 2017). Our new preliminary results further indicate that skin PrPSc is detectable by both RT-QuIC and serial protein misfolding cyclic amplification (sPMCA) assays even at the asymptomatic stage in a prion-infected animal model. We hypothesize that skin PrPSc can be both a source of iatrogenic prion transmission and a biomarker for preclinical/premortem/postmortem diagnostic testing of prion diseases. To test for the hypothesis, the following four Aims will be pursued: (1) to quantitate infectivity of skin prions from sCJD patients, (2) to pinpoint the distribution of PrPSc within the skin, (3) to evaluate the potential of skin PrPSc as the source of iatrogenic transmission, and (4) to validate skin PrPSc as a biomarker for diagnosis of prion diseases. We expect that the proposed study will not only shed light on the potential risk of human-to-human sCJD transmission via skin prions but also establish alternative preclinical/premortem/postmortem diagnostic assays for prion diseases. Moreover, new knowledge generated from this study may apply to much more common neurodegenerative diseases such as Alzheimer?s and Parkinson?s diseases where the disease-specific misfolded proteins have been observed in the skin of respective patients.

Public Health Relevance

Our recent studies indicate that the skin of patients with Creutzfeldt-Jakob disease (CJD) is infectious and that the skin prions can be detected far ahead in the brain damages in an animal model. The aim of our proposal is to address key issues whether the skin of CJD patients is a source of iatrogenic disease transmission and whether skin prions can be used as a biomarker for premortem and postmortem diagnostic tests. We expect that our study will not only provide insights into prion disease but also other common neurodegenerative diseases such as Alzheimer's and Parkinson's diseases.

 Funding Agency

Agency National Institute of Health (NIH) Institute National Institute of Neurological Disorders and Stroke (NINDS) Type Research Project (R01) Project # 5R01NS109532-03 Application # 10000217 Study Section Special Emphasis Panel (ZRG1) Program Officer Wong, May

Project Start 2018-09-15 Project End 2023-06-30 Budget Start 2020-07-01 Budget End 2021-06-30 Support Year 3 Fiscal Year 2020 Total Cost Indirect Cost


Name Case Western Reserve University Department Pathology Type Schools of Medicine DUNS # 077758407

City Cleveland State OH Country United States Zip Code 44106

 Related projects

NIH 2020 R01 NS Role of skin prions in disease transmission and diagnostic testing of human prion disease Zou, Wen-Quan; Kong, Qingzhong / Case Western Reserve University 

NIH 2019 R01 NS Role of skin prions in disease transmission and diagnostic testing of human prion disease Zou, Wen-Quan; Kong, Qingzhong / Case Western Reserve University 

NIH 2018 R01 NS Role of skin prions in disease transmission and diagnostic testing of human prion disease Zou, Wen-Quan; Kong, Qingzhong / Case Western Reserve University

TUESDAY, MARCH 12, 2019 

Early preclinical detection of prions in the skin of prion-infected animals

Early preclinical detection of prions in the skin of prion-infected animals

Published: 16 January 2019

Early preclinical detection of prions in the skin of prion-infected animals 

Zerui Wang, Matteo Manca, Aaron Foutz, Manuel V. Camacho, Gregory J. Raymond, Brent Race, Christina D. Orru, Jue Yuan, Pingping Shen, Baiya Li, Yue Lang, Johnny Dang, Alise Adornato, Katie Williams, Nicholas R. Maurer, Pierluigi Gambetti, Bin Xu, Witold Surewicz, Robert B. Petersen, Xiaoping Dong, Brian S. Appleby, Byron Caughey, Li Cui, Qingzhong Kong & Wen-Quan Zou Nature Communicationsvolume 10, Article number: 247 (2019) | 

A Publisher Correction to this article was published on 04 February 2019 This article has been updated


A definitive pre-mortem diagnosis of prion disease depends on brain biopsy for prion detection currently and no validated alternative preclinical diagnostic tests have been reported to date. To determine the feasibility of using skin for preclinical diagnosis, here we report ultrasensitive serial protein misfolding cyclic amplification (sPMCA) and real-time quaking-induced conversion (RT-QuIC) assays of skin samples from hamsters and humanized transgenic mice (Tg40h) at different time points after intracerebral inoculation with 263K and sCJDMM1 prions, respectively. sPMCA detects skin PrPSc as early as 2 weeks post inoculation (wpi) in hamsters and 4 wpi in Tg40h mice; RT-QuIC assay reveals earliest skin prion-seeding activity at 3 wpi in hamsters and 20 wpi in Tg40h mice. Unlike 263K-inoculated animals, mock-inoculated animals show detectable skin/brain PrPSc only after long cohabitation periods with scrapie-infected animals. Our study provides the proof-of-concept evidence that skin prions could be a biomarker for preclinical diagnosis of prion disease.


Discussion Several lines of evidence have recently suggested that skin is the place where misfolded proteins often stay, which may play a role in the pathogenesis and early detection of neurodegenerative diseases25. While it has been known for a long time that sheep and goats with scrapie often have skin lesions26, prions had not been detected in skin until prion infectivity was first found in skin of prion-infected greater kudu using an animal-based bioassay27. Subsequently, skin PrPSc was detected directly by western blotting after the enrichment of PrPSc in experimentally or naturally scrapie-infected hamsters and sheep, as well as in a single cadaver with vCJD28,29. We recently observed both prion-seeding activity and prion infectivity in the skin of patients with sCJD and vCJD at the terminal stage of the diseases using RT-QuIC assay and a bioassay humanized Tg mouse-based, respectively13. In the current study, we further demonstrated that skin PrPSc is preclinically detectable not only by RT-QuIC, but also by sPMCA before brain damage occurs in two animal models of prion diseases, 263K-inoculated hamsters and sCJDMM1-inoculated humanized Tg40h mice, with parallel RT-QuIC findings in an independent set of scrapie-infected hamsters done in an independent laboratory.

In terms of the earliest time point at which skin PrPSc becomes detectable in animals infected by the intracerebral inoculation of prions, sPMCA showed detection at 2 wpi for hamsters and 4 wpi for Tg40h mice, while RT-QuIC detection was at 3 wpi for hamsters and 20 wpi for Tg40h (Fig. 8a). These findings indicate that skin PrPSc is detectable at least 5 weeks earlier in scrapie-infected animals before brain pathology is observed. Of the five body areas examined, the ear pinna and back skin were the areas that showed earliest prion-seeding activity (3 wpi), while the thigh skin was the latest (9 wpi). The latter was also confirmed by two sets of hamsters examined in two-independent laboratories in this study. In contrast to the prion-seeding activity found in the skin of infected hamsters at the early stage of infection, the earliest time point showing skin prion-seeding activity was at 20 wpi in humanized Tg mice by RT-QuIC (Fig. 8b). This time point was similar whether recombinant hamster or human PrP substrate was used despite our expectation that human PrP might provide a more sensitive RT-QuIC for human PrPSc based on better sequence homology between the seeds and substrate.

Although the reasons for early and widespread presence of PrPSc in the skin remain unclear, possibilities include the spread of the prion inoculum itself, or endogenously replicating prions, from the brain through the peripheral nerves to the skin within the 2–3 weeks required for the first detection by our ultrasensitive sPMCA and RT-QuIC assays. PrP seeding activity has been detected in the blood in the prion-infected hamsters and deer immediately after peripheral inoculation including oral, nasal, or blood route30. However, no reports have shown that PrPSc is consistently detectable in the blood of prion-infected hamsters within 2 weeks post intracerebral inoculation. Thus, the early spread of PrPSc from the brain-to-the skin in the intracerebrally 263K-inoculated hamsters is likely either not through the blood or, if initially from the blood, requires time-dependent concentration or replication in the skin to become detectable.

It is unclear why, according to RT-QuIC, the back skin more consistently accumulates PrPSc than the other skin areas tested. It may depend on the dermatomes of nerves and their distance from the CNS. Between the back and thigh areas examined, the back dermatome is more proximate to the CNS. Similarly, we found prion-seeding activity much earlier in the ear area than the thigh (3 wpi vs 9 wpi). Analogously, misfolded α-synuclein deposition in Parkinson’s disease patients is more frequently detected in proximate (100% in the cervical C7 site) compared to distal (35% in the thoracic T12 region) skin areas by immunofluorescence microscopy31,32,33. In future studies, it would be interesting to determine whether PrPSc in the skin of sCJD has a similar distribution, and whether factors besides dermatome distance from the brain are involved.

Both sPMCA and RT-QuIC assays detected skin PrPSc early in scrapie-infected hamsters. However, sPMCA amplified PrPSc in skin samples from CJD-infected Tg40 mice at 4 wpi, while RT-QuIC assay detected prion-seeding activity only at 20 wpi (Fig. 8). The reason for the difference in Tg40 mice is not clear, but may be due in part to differences between the assays and the prion strains involved. sPMCA is performed in brain homogenates, which provide naturally post-translationally modified (glycosylated and GPI-anchored) PrPC as the substrate, and other potential brain-derived co-factors. RT-QuIC reactions include only unmodified recombinant PrPC as substrate, and no natural co-factors. sPMCA reactions are accelerated by sonication, whereas RT-QuIC reactions are shaken. Also, in successive rounds of sPMCA, the substrate and other brain components are refreshed, but our RT-QuIC reactions were performed in one round, with no refreshment. To exclude the effect of mismatch between seeds and substrates on the sensitivity of RT-QuIC reactions, we tested two recombinant PrP molecules as substrates from two different species including hamster and human and they all showed the similar sensitivity with the same earliest time point at 20 wpi. Finally, 263K scrapie and MM1 sCJD prions undoubtedly differ in conformation, and therefore, perhaps, their interactions with co-factors, various PrPC substrates, and/or skin-derived inhibitors of RT-QuIC reactions. These factors might differentially affect the sensitivity of detection of MM1 sCJD in the skin of Tg40 mice by sPMCA and RT-QuIC. It is also possible that the RT-QuIC assay may become as sensitive as sPMCA for skin prion detection in the Tg40h mice after further optimization of RT-QuIC’s experimental conditions.

Our early detection of PrPSc in the skin of sCJD- and scrapie-infected rodents suggests that it may be possible to do the same with the skin of humans who carry PrP mutations associated with genetic prion diseases such as familial CJD, Gerstmann–Sträussler–Scheinker syndrome, or fatal familial insomnia because it is expected that their mutant PrPC spontaneously converts into PrPSc and accumulates later in life. Skin-based RT-QuIC may reveal early prion-seeding activity in PrP mutation-carriers, or people with suspected exposures to prion infections, while they are still asymptomatic. Even for suspected sCJD cases, who are only identified in the symptomatic phase, skin-based RT-QuIC might be useful for monitoring disease progression, defining severity and diversity, and evaluating the treatment efficacy when potential drugs become available.

Although neither clinical signs nor brain PrPSc were observed in control animals cohabitating with 263K-inoculated hamsters within 12 weeks, the mock-inoculated animals that were housed with scrapie-infected animals had amplifiable PrPSc in the brain and skin via amplification techniques. Moreover, in contrast to the skin PrPSc amplified from the 263K-inoculated hamsters as early as 2 wpi, the control animals that co-habitated with infected hamsters were found to have amplified skin PrPSc after cohabitation for 11 weeks. This finding implies that the skin PrPSc detected early in the scrapie-infected hamsters is not the result of environmental contamination; otherwise, the control animals would exhibit skin PrPSc at 2 wpi as well. The finding of skin PrPSc in the cohabitating control animals may be relevant to the environmental transmission of prions observed in natural animal prion diseases, such as scrapie and CWD. Interestingly, prion transmission has been observed in hamsters by contact with prion-contaminated surfaces through rubbing and bedding34, in which cases skin is expected to be involved. The role that skin may plays in the environmental transmission of prions warrants future investigation.

Skin PrPSc may derive from urine or fecal prion contamination in addition to possible skin shedding due to scratching or biting each other. Indeed, scrapie infectivity was reported in the urine of prion-infected mice coincident with lymphocytic nephritis during their preclinical and clinical stages of prion infection35,36. It was also observed in their urine in intracerebrally inoculated hamsters even without any apparent inflammation21. In addition, deer with clinical CWD and mild to moderate nephritis were found to have sPMCA-detectable PrPSc and CWD-infectivity in urine22. Using sPMCA, PrPSc was detected in urine of ~80% of the hamsters intraperitoneally inoculated with 263K prions at the symptomatic stage23. Notably, PrPSc was detected in urine, but only at the terminal stage of disease in intracerebrally inoculated hamsters, except for a few days immediately after oral administration24. Similar to the observations by Gonzalez-Romero et al.23, Murayama et al. also found that not all infected hamsters had detectable urine PrPSc even at the terminal stage24. The skin PrPSc detected early in the intracerebrally infected hamsters, but not in the co-habitated-negative controls, at 2 wpi suggests that skin prions may not result from urine at the early stage of infection.

Unlike the situation with urine, it has not been very clear whether PrPSc is present in feces of intracerebrally inoculated hamsters at the early stage of prion infection. High titers of prion infectivity were detected in feces throughout the disease incubation in orally inoculated hamsters while low levels of infectivity were occasionally observed in intracerebrally- or intraperitoneally-inoculated animals18. For instance, no prion infectivity was detected in feces of hamsters within 3 wpi, including at 1, 2, and 22 days post inoculation (dpi), except for 8 dpi when 17% transmission rate was detected in feces18. However, fecal PrPSc was only detected during the clinical stage of disease by sPMCA in hamsters with lower doses of oral inoculum19. Western blotting of fecal extracts showed shedding of PrPSc in the excrement at 24–72 h post inoculation, but not at 0–24 h post inoculation, or at later preclinical or clinical time points19. Consistent with this observation, prion infectivity was not detected in feces of mule deer after oral challenge with CWD prions within the first 12–16 wpi, but feces contained infectivity after 36 wpi through to clinical disease stages at 64–80 wpi20. It is likely that PrPSc is present in feces of infected animals at the late stage of prion infection, which may contaminate the skin of cohabitating control animals.

Although prion contamination of skin by excrement may not be a major concern in human prion diseases, it is an important issue for prion transmission in animals, such as cattle, sheep, goats, and cervids. It is worth noting that the high incidence of scrapie in sheep and goats as well as CWD in cervids is believed to be attributable to contamination of the environment due to high prion shedding. The detection of PrPSc in excretions including saliva, urine, and feces clearly indicates this shedding. Oral ingestion due to the coprophagic behavior of animals has been believed to cause wide horizontal transmission of scrapie and CWD. However, our current finding of skin PrPSc in cohabitating prion-inoculated and PBS-inoculated control animals, as well as the occurrence of brain PrPSc in the PBS-inoculated animals at the late stage suggests that prion contamination of skin may be a potential route of transmission of prion diseases.

In conclusion, our study indicates that skin PrPSc may be a useful biomarker not only for the preclinical diagnosis of prion diseases, but also for monitoring disease progression following infection and treatment. Since the chance that PrPSc can be consistently detected in blood and urine of sCJD patients by sPMCA and RT-QuIC assays has been virtually very low10,11,37, it is possible that detection of PrPSc in the skin, a highly accessible tissue, could be developed for evaluating therapeutic efficiency and drug screening. As mentioned earlier, RT-QuIC analysis of CSF and nasal brushing specimens to date has been used for diagnosis of human prion diseases only at the clinical stage. Moreover, it is much less practical in live animals to collect CSF and nasal brushing specimens. In cervids, at least, there has been more focus on RT-QuIC analyses of RAMALT biopsies and various excreta38. Although these analyses are currently the most accurate tests available for chronic wasting disease in live cervids, they do not yet provide 100% diagnostic sensitivity and specificity38. Thus, it may be helpful to have additional or alternative diagnostic specimens, such as skin or ear pinna punches, for RT-QuIC and sPMCA testing.

Oral ingestion due to the coprophagic behavior of animals has been believed to cause wide horizontal transmission of scrapie and CWD. 

***> However, our current finding of skin PrPSc in cohabitating prion-inoculated and PBS-inoculated control animals, as well as the occurrence of brain PrPSc in the PBS-inoculated animals at the late stage suggests that prion contamination of skin may be a potential route of transmission of prion diseases.


Case Western Reserve researchers to examine skin prions in fatal neurodegenerative disease $2.9 million NIH grant focuses on transmission and diagnostic testing 

FRIDAY, MARCH 30, 2018 

Detection of Creutzfeldt-Jakob disease prions in skin: implications for healthcare 

-----Original Message----- 

From: Terry Singeltary <> 

To: Sent: Thu, Nov 23, 2017 10:22 am 

Subject: re-NIH scientists and collaborators find infectious prion protein in skin of CJD patients

>>>Although sCJD patient skin contained ~103- to 105-fold lower prion seeding activity than did sCJD patient brain tissue, all 12 mice from two transgenic mouse lines inoculated with sCJD skin homogenates from two sCJD patients succumbed to prion disease within 564 days after inoculation<<<

for something to be 103 to 105 fold lower prion seeding, yet still be 100% fatal in all test subjects, very disturbing...terry


NIH scientists and collaborators find infectious prion protein in skin of CJD patients


Prion seeding activity and infectivity in skin samples from patients with sporadic Creutzfeldt-Jakob disease

Accessing transmissibility and diagnostic marker of skin prions. 

Kong, Qingzhong Safar, Jiri G. Zou, Wen-Quan 

Case Western Reserve University, Cleveland, OH, United States

TUESDAY, MAY 10, 2016 

Accessing transmissibility and diagnostic marker of skin prions

A Kiss of a Prion: New Implications for Oral Transmissibility 

The transmissibility of scrapie among sheep (intraspecies) is well recognized. It must be emphasized that horizontal transfer (from one individual to another) of scrapie is the main route of infection, because vertical transmission of disease from mother to offspring via milk or placental tissue occurs infrequently. Thus, in view of the report by Maddison et al, the oral transmissibility of prions among sheep may serve as a major route for horizontal scrapie transfer. This occurrence is plausible because sheep often lick each other. Maddison et al [10] indicate that, because of the similarities in prion tissue distribution, their implications for the oral transmission of ovine scrapie might be true for other prion diseases, such as cervid chronic wasting disease and human vCJD. If this is true for humans, a kiss of a prion may sometimes have lethal consequences.

PERSON TO PERSON TRANSMISSION OF THE TSE PRION DISEASE, never say never. as the disease mutates, it becomes more virulent in some cases, and cwd is efficiently transmitted from cervid to cervid. there are now multiple strains of CWD in cervids, as with the TSE prion disease in bovine, sheep and goats, and we now have the atypical TSE in these species, that have mutated, and some strains _have_ become more virulent. we now have younger humans dying from the TSE prion disease, with shorter incubation period, and that are much younger. human to human casual transmission of the TSE prion disease...again, never say never. ...TSS

see more here;

The occurrence of the disease in a patient who had contact with cases of familial C.J.D., but was not genetically related, has been described in Chile (Galvez et al., 1980) and in France (Brown et al., 1979b). In Chile the patient was related by marriage, but with no consanguinity, and had social contact with subsequently affected family members for 13 years before developing the disease. The contact case in France also married into a family in which C.J.D. was prevalent and had close contact with an affected member. In neither instance did the spouse of the non-familial case have the disease. The case described in this report was similarly related to affected family members and social contact had occurred for 20 years prior to developing C.J.D. If contact transmission had occurred, the minimum transmission period would be 11 years. Contact between sporadic cases has not been described and it is remarkable that possible contact transmissions have all been with familial cases. No method of transmission by casual social contact has been suggested.

***The occurrence of contact cases raises the possibility that transmission in families may be effected by an unusually virulent strain of the agent.

snip...see full text here;


Prion-Seeding Activity Is widely Distributed in Tissues of Sporadic Creutzfeldt-Jakob Disease Patients


Tuesday, November 20, 2018

Eyes of CJD patients show evidence of prions Finding could help early diagnosis, raise concern for eye exams and transplants.

Singeltary 1999


i said that 20 years ago about this very thing. but did anyone!

prepare for the storm...terry

year 1999 to 2000

Subject: RE-The Eyes Have It (cjd) and they could be stealing them from your loved one... "pay back time" 

Date: Sat, 16 Sep 2000 10:04:26 -0700 

From: "Terry S. Singeltary Sr." 

Reply-To: Bovine Spongiform Encephalopathy 

######### Bovine Spongiform Encephalopathy #########

Greetings List Members,

I hate to keep kicking a madcow, but this still is very disturbing to me. Not only for the recipient of the cornea's, but as well, for the people whom would be operated on, using the same tools that were used to put those stolen cornea's in the recipient with. No history of this donor or his family (re-ffi), or anything would be known, using stolen organs and or tissue's. I just think this is not only wrong, but very dangerous to a great many other people, as this is one of the most infectious tissues of TSE's. It seems that this practice of stealing organ/tissue happens more than we think. Anyway, the family of the victim which had their cornea's stolen, are now suing. In the example I used with my Mother, if 3 months before, she would have been in a catastrophic accident (car wreck, whatever), no autopsy (for whatever reason), no family (for whatever reason), she lay in the morgue, and after 4 hours, they come steal the cornea's, lot of people could have been infected, just because of lack of medical history of donor/family. It may be hypothetical, but very real. We need to stop the spread of this disease.

kind regards, Terry S. Singeltary Sr., Bacliff, Texas USA 


Previous story--

Cadaver corneal transplants -- without family permission...

Cadaver corneal transplants -- without family permission Houston, Texas channel 11 news 28 Nov 99

Reported by Terry S. Singeltary Sr.son of CJD victim

"It was a story about how the Lions eye bank were harvesting corneas from victims in the Morgue, without their consent. Under Texas law, this appears to be legal (remember Texas has the Veggie liable law). Even if Family says no, this appears to happen, from what the news story said.

They said the only way to prevent this, is to fill out a form, stating not to have this done. So if you don't fill out the form, they can do this. How many people don't know about the form? 

 This is not only disgusting and appalling, it could be highly infectious. Without proper background checking of the donors, on their physical history, checking on past dementia, and/or family history, some of these unfortunate victims, could be passing a human TSE. 

 Response Jill Spitler Clevelland Eye Bank: 

 "No, we are not stealing.........Yes, you do have such a law in the state of Texas, but not all your state Eye Banks utilize the law. The Eye Bank that you're speaking of is only one of 43 certified Eye Bank throughout the USA. 

 And there are measure taken per the Medical Standards of the Eye Bank Association of America, the certifying body for eye banks and per FDA regulations to address those concerns that you speak of. 

 I would suggest that those interested/concern with transplant contact their local agencies. The Eye Bank Association of America has a web. site . Further if anyone has problems contacting or finding out about their local organization(s), call me or e-mail me I would be glad to help. My e-mail address is

 Terry Singeltary responds: 

 "Explain this to the family in Houston who went to their loved ones funeral, only to find out that the loved one that was in the casket, had their corneas removed without their permission, without the consent of the victim or it's family. They would not have known it, only for the funny look the victim had. So, they questioned, only to find out, the corneas, had in fact, been removed without consent. 

 I call that stealing, regardless what the law states. This type of legal grave robbing is not a logical thing to do without knowing any type of background of the victims medical past, which really will not prove anything due to the incubation period. Eye tissue being potentially a highly infective source, there are risks here. 

 Should they not at least know of the potential ramifications of TSE's (the person receiving the corneas)? 

 Should there not be some sort of screening? 

 Should there be some sort of moral issue here? 

 If this is the case, and in fact, they can come take your corneas, without your consent, then what will they start taking next, without your consent? 

 Lets look at a hypothetical situation: 

 What would happen if my Mom (DOD 12-14-97 hvCJD) would have gotten into a car wreck and died, before the symptoms of CJD appeared. Not much money, so there was no autopsy. What would have happened to that recipient of those infecting corneas?" 

 Comment (webmaster): Actual transmission of CJD by means of corneal transplant may or may not be rare. The incidence of infectivity in older people could be fairly high; this is not to be confused with the lower incidence of symptomatic (clinical) CJD. It is very unlikely that familial CJD would have been diagnosed in earlier generations; however, without interviewing the family even known kindreds would not be excluded. 

 In blood donation, a much stricter policy is followed, even though corneal transplant may be far more dangerous (being a direct link to the brain and not going through purification steps). 

 Since highly sensitive tests for pre-clinical CJD are now available, it would make sense to screen corneas for CJD, just as they are screened for AIDS, hepatitus, and a host of other conditions. 

Eye procedure raises CJD concerns

BySTEVE MITCHELL, Medical Correspondent

WASHINGTON, Nov. 18 (UPI) -- A New York man who died from a rare brain disorder similar to mad cow disease in May underwent an eye procedure prior to his death that raises concerns about the possibility of transmitting the fatal disease to others, United Press International has learned.

The development comes on the heels of the announcement Thursday by U.S. Department of Agriculture officials of a possible second case of mad cow disease in U.S. herds.

Richard Da Silva, 58, of Orange County, N.Y., died from Creutzfeldt Jakob disease, an incurable brain-wasting illness that strikes about one person per million.

Richard's wife Ann Marie Da Silva told UPI he underwent a check for the eye disease glaucoma in 2003, approximately a year before his death. The procedure involves the use of a tonometer, which contacts the cornea -- an eye tissue that can contain prions, the infectious agent thought to cause CJD.

Ann Marie's concern is that others who had the tonometer used on them could have gotten infected.

A 2003 study by British researchers suggests her concerns may be justified. A team led by J.W. Ironside from the National Creutzfeldt-Jakob Disease Surveillance Unit at the University of Edinburgh examined tonometer heads and found they can retain cornea tissue that could infect other people -- even after cleaning and decontaminating the instrument.

"Retained corneal epithelial cells, following the standard decontamination routine of tonometer prisms, may represent potential prion infectivity," the researchers wrote in the British Journal of Ophthalmology last year. "Once the infectious agent is on the cornea, it could theoretically infect the brain."

Prions, misfolded proteins thought to be the cause of mad cow, CJD and similar diseases, are notoriously difficult to destroy and are capable of withstanding most sterilization procedures.

Laura Manuelidis, an expert on these diseases and section chief of surgery in the neuropathology department at Yale University, agreed with the British researchers that tonometers represent a potential risk of passing CJD to other people.

Manuelidis told UPI she has been voicing her concern about the risks of corneas since 1977 when her own study, published in the New England Journal of Medicine, showed the eye tissue, if infected, could transmit CJD.

At the time the procedure was done on Richard Da Silva, about a year before he died, she said it was "absolutely" possible he was infectious.

The CJD Incidents Panel, a body of experts set up by the U.K. Department of Health, noted in a 2001 report that procedures involving the cornea are considered medium risk for transmitting CJD. The first two patients who have a contaminated eye instrument used on them have the highest risk of contracting the disease, the panel said.

In 1999, the U.K. Department of Health banned opticians from reusing equipment that came in contact with patients' eyes out of concern it could result in the transmission of variant CJD, the form of the disease humans can contract from consuming infected beef products.

Richard Da Silva was associated with a cluster of five other cases of CJD in southern New York that raised concerns about vCJD.

None of the cases have been determined to stem from mad cow disease, but concerns about the cattle illness in the United States could increase in light of the USDA announcement Thursday that a cow tested positive on initial tests for the disease. If confirmed, this would be the second U.S. case of the illness; the first was detected in a Washington cow last December. The USDA said the suspect animal disclosed Thursday did not enter the food chain. The USDA did not release further details about the cow, but said results from further lab tests to confirm the initial tests were expected within seven days.

Ann Marie Da Silva said she informed the New York Health Department and later the eye doctor who performed the procedure about her husband's illness and her concerns about the risk of transmitting CJD via the tonometer.

The optometrist -- whom she declined to name because she did not want to jeopardize his career -- "didn't even know what this disease was," she said.

"He said the health department never called him and I called them (the health department) back and they didn't seem concerned about it," she added. "I just kept getting angrier and angrier when I felt I was being dismissed."

She said the state health department "seems to have an attitude of don't ask, don't tell" about CJD.

"There's a stigma attached to it," she said. "Is it because they're so afraid the public will panic? I don't know, but I don't think that the answer is to push things under the rug."

New York State Department of Health spokeswoman Claire Pospisil told UPI she would look into whether the agency was concerned about the possibility of transmitting CJD via tonometers, but she had not called back prior to story publication.

Disposable tonometers are readily available and could avoid the risk of transmitting the disease, Ironside and colleagues noted in their study. Ann Marie Da Silva said she asked the optometrist whether he used disposable tonometers and "he said 'No, it's a reusable one.'"

Ironside's team also noted other ophthalmic instruments come into contact with the cornea and could represent a source of infection as they are either difficult to decontaminate or cannot withstand the harsh procedures necessary to inactivate prions. These include corneal burrs, diagnostic and therapeutic contact lenses and other coated lenses.

Terry Singletary, whose mother died from a type of CJD called Heidenhain Variant, told UPI health officials were not doing enough to prevent people from being infected by contaminated medical equipment.

"They've got to start taking this disease seriously and they simply aren't doing it," said Singletary, who is a member of CJD Watch and CJD Voice -- advocacy groups for CJD patients and their families.

U.S. Centers for Disease Control and Prevention spokeswoman Christine Pearson did not return a phone call from UPI seeking comment. The agency's Web site states the eye is one of three tissues, along with the brain and spinal cord, that are considered to have "high infectivity."

The Web site said more than 250 people worldwide have contracted CJD through contaminated surgical instruments and tissue transplants. This includes as many as four who were infected by corneal grafts. The agency noted no such cases have been reported since 1976, when sterilization procedures were instituted in healthcare facilities.

Ironside and colleagues noted in their study, however, many disinfection procedures used on optical instruments, such as tonometers, fail. They wrote their finding of cornea tissue on tonometers indicates that "no current cleaning and disinfection strategy is fully effective."

Singletary said CDC's assertion that no CJD cases from infected equipment or tissues have been detected since 1976 is misleading.

"They have absolutely no idea" whether any cases have occurred in this manner, he said, because CJD cases often aren't investigated and the agency has not required physicians nationwide report all cases of CJD.

"There's no national surveillance unit for CJD in the United States; people are dying who aren't autopsied, the CDC has no way of knowing" whether people have been infected via infected equipment or tissues, he said.

Ann Marie Da Silva said she has contacted several members of her state's congressional delegation about her concerns, including Rep. Sue Kelly, R-N.Y., and Sen. Charles Schumer, D-N.Y.

"Basically, what I want is to be a positive force in this, but I also want more of a dialogue going on with the public and the health department," she said.

Friday, December 04, 2009

New guidance on decontamination of trial contact lenses and other contact devices has been revealed for CJD AND vCJD


Of Grave Concern Heidenhain Variant Creutzfeldt Jakob Disease


CDC Eyes of CJD patients show evidence of prions concerns for iatrogenic transmission


Benefit cuts hit mad cow disease sufferer A girl born severely disabled from vCJD may lose her home under universal credit




A nationwide trend analysis in the incidence and mortality of Creutzfeldt–Jakob disease in Japan between 2005 and 2014 with increasing trends of incidence and mortality


Overall, the AAPCs of age-adjusted CJD-associated mortality rates rose significantly over the study period (3.2%; 95% confidence interval [CI] 1.4–5.1%). The AAPC of the age-adjusted incidence rates also increased (overall 6.4%; 95% CI 4.7–8.1%). The CJD-associated increases in the mortality and incidence rates were especially prominent among adults over the age of 70 years. Given this trend in aging of population, the disease burden of CJD will continue to increase in severity. Our findings thus recommend that policymakers be aware of the importance of CJD and focus on preparing to address the increasing prevalence of dementia.


Volume 26, Number 8—August 2020 

Sporadic Creutzfeldt-Jakob Disease among Physicians, Germany, 1993–2018 high proportion of physicians with sCJD were surgeons

THURSDAY, JULY 02, 2020 

Variant Creutzfeldt–Jakob Disease Diagnosed 7.5 Years after Occupational Exposure



Saturday, January 16, 2010 

*** Evidence For CJD TSE Transmission Via Endoscopes 1-24-3 

re-Singeltary to Bramble et al Evidence For CJD/TSE Transmission Via Endoscopes 

From Terry S. Singletary, Sr 1-24-3 

Terry S. Singeltary Sr., P.O. , Bacliff, Texas 77518 USA 

Professor Michael Farthing wrote: *** Louise Send this to Bramble (author) for a comment before we post. Michael 

MONDAY, JULY 06, 2020 

TSE Prion Endoscope Reprocessing Solution Market Structure Analysis for the Period 2017 – 2025


England Creutzfeldt-Jakob disease (CJD) biannual update (February 2020) Health Protection Report Volume 14 Number 3 11 February 2020

Monday, February 3, 2020 

Informing Patient Contacts About Iatrogenic Creutzfeldt Jakob Disease


CJD TSE Prion Blood Products, iatrogenic transmission, Confucius is confused again, WHAT IF? Docket Number: FDA-2012-D-0307


Man died of CJD 30 years after brain surgery 36 years old DOD


Disinfection of Multi-Use Ocular Equipment for Ophthalmological Procedures: A Review of Clinical Effectiveness, Cost-Effectiveness, and Guidelines

Singeltary comments;

Re-Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy 

>>> The only tenable public line will be that "more research is required’’ <<< 

>>> possibility on a transmissible prion remains open<<< 

O.K., so it’s about 23 years later, so somebody please tell me, when is "more research is required’’ enough time for evaluation ? 

Re-Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy 

Nature 525, 247?250 (10 September 2015) doi:10.1038/nature15369 Received 26 April 2015 Accepted 14 August 2015 Published online 09 September 2015 Updated online 11 September 2015 Erratum (October, 2015) 

snip...see full Singeltary Nature comment here; 

Alzheimer's disease

let's not forget the elephant in the room. curing Alzheimer's would be a great and wonderful thing, but for starters, why not start with the obvious, lets prove the cause or causes, and then start to stop that. think iatrogenic, friendly fire, or the pass it forward mode of transmission. think medical, surgical, dental, tissue, blood, related transmission. think transmissible spongiform encephalopathy aka tse prion disease aka mad cow type disease... 

Commentary: Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy

Self-Propagative Replication of Ab Oligomers Suggests Potential Transmissibility in Alzheimer Disease 

*** Singeltary comment PLoS *** 

Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ?

Posted by flounder on 05 Nov 2014 at 21:27 GMT

Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ? 


Alzheimer’s disease and Transmissible Spongiform Encephalopathy disease have both been around a long time, and was discovered in or around the same time frame, early 1900’s. Both diseases are incurable and debilitating brain disease, that are in the end, 100% fatal, with the incubation/clinical period of the Alzheimer’s disease being longer (most of the time) than the TSE prion disease. Symptoms are very similar, and pathology is very similar. 


Through years of research, as a layperson, of peer review journals, transmission studies, and observations of loved ones and friends that have died from both Alzheimer’s and the TSE prion disease i.e. Heidenhain Variant Creutzfelt Jakob Disease CJD. 


I propose that Alzheimer’s is a TSE disease of low dose, slow, and long incubation disease, and that Alzheimer’s is Transmissible, and is a threat to the public via the many Iatrogenic routes and sources. It was said long ago that the only thing that disputes this, is Alzheimer’s disease transmissibility, or the lack of. The likelihood of many victims of Alzheimer’s disease from the many different Iatrogenic routes and modes of transmission as with the TSE prion disease. 


There should be a Global Congressional Science round table event set up immediately to address these concerns from the many potential routes and sources of the TSE prion disease, including Alzheimer’s disease, and a emergency global doctrine put into effect to help combat the spread of Alzheimer’s disease via the medical, surgical, dental, tissue, and blood arena’s. All human and animal TSE prion disease, including Alzheimer’s should be made reportable in every state, and Internationally, WITH NO age restrictions. Until a proven method of decontamination and autoclaving is proven, and put forth in use universally, in all hospitals and medical, surgical arena’s, or the TSE prion agent will continue to spread. IF we wait until science and corporate politicians wait until politics lets science _prove_ this once and for all, and set forth regulations there from, we will all be exposed to the TSE Prion agents, if that has not happened already. 





[9. Whilst this matter is not at the moment directly concerned with the iatrogenic CJD cases from hgH, there remains a possibility of litigation here, and this presents an added complication. 

There are also results to be made available shortly 

(1) concerning a farmer with CJD who had BSE animals, 

(2) on the possible transmissibility of Alzheimer’s and 

(3) a CMO letter on prevention of iatrogenic CJD transmission in neurosurgery, all of which will serve to increase media interest.]

P132 Aged cattle brain displays Alzheimer’s-like pathology that can be propagated in a prionlike manner

Ines Moreno-Gonzalez (1), George Edwards III (1), Rodrigo Morales (1), Claudia Duran-Aniotz (1), Mercedes Marquez (2), Marti Pumarola (2), Claudio Soto (1) 


These results may contribute to uncover a previously unsuspected etiology surrounding some cases of sporadic AD. However, the early and controversial stage of the field of prion-like transmission in non-prion diseases added to the artificial nature of the animal models utilized for these studies, indicate that extrapolation of the results to humans should not be done without further experiments. 

P75 Determining transmissibility and proteome changes associated with abnormal bovine prionopathy 

Dudas S (1,2), Seuberlich T (3), Czub S (1,2) 

In prion diseases, it is believed that altered protein conformation encodes for different pathogenic strains. Currently 3 different strains of bovine spongiform encephalopathy (BSE) are confirmed. Diagnostic tests for BSE are able to identify animals infected with all 3 strains, however, several diagnostic laboratories have reported samples with inconclusive results which are challenging to classify. It was suggested that these may be novel strains of BSE; to determine transmissibility, brain material from index cases were inoculated into cattle. 

In the first passage, cattle were intra-cranially challenged with brain homogenate from 2 Swiss animals with abnormal prionopathy. The challenged cattle incubated for 3 years and were euthanized with no clinical signs of neurologic disease. Animals were negative when tested on validated diagnostic tests but several research methods demonstrated changes in the prion conformation in these cattle, including density gradient centrifugation and immunohistochemistry. Currently, samples from the P1 animals are being tested for changes in protein levels using 2-D Fluorescence Difference Gel Electrophoresis (2D DIGE) and mass spectrometry. It is anticipated that, if a prionopathy is present, this approach should identify pathways and targets to decipher the source of altered protein conformation. In addition, a second set of cattle have been challenged with brain material from the first passage. Ideally, these cattle will be given a sufficient incubation period to provide a definitive answer to the question of transmissibility. 

=====prion 2018===

***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts 

S67 PrPsc was not detected using rapid tests for BSE.

***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.

*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***

Posted by Terry S. Singeltary Sr. on 03 Jul 2015 at 16:53 GMT


Molecular characterization of BSE in Canada

Jianmin Yang 1 , Sandor Dudas 2 , Catherine Graham 2 , Markus Czub 3 , Tim McAllister 1 , Stefanie Czub 1 1 Agriculture and Agri-Food Canada Research Centre, Canada; 2 National and OIE BSE Reference Laboratory, Canada; 3 University of Calgary, Canada

Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle. Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres.

Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.

Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal-specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. It also suggests a similar cause or source for atypical BSE in these countries.

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan.

*** This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada.

*** It also suggests a similar cause or source for atypical BSE in these countries. ***

see page 176 of 201 pages...tss

*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply;

On behalf of the Scientific Committee, I am pleased to inform you that your abstract

'Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009'

WAS accepted for inclusion in the INTERNATIONAL SCIENTIFIC EXCHANGE (ISE) section of the 14th International Congress on Infectious Diseases. Accordingly, your abstract will be included in the "Intl. Scientific Exchange abstract CD-rom" of the Congress which will be distributed to all participants.

Abstracts accepted for INTERNATIONAL SCIENTIFIC EXCHANGE are NOT PRESENTED in the oral OR poster sessions.

Your abstract below was accepted for: INTERNATIONAL SCIENTIFIC EXCHANGE

#0670: Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009

Author: T. Singeltary; Bacliff, TX/US

Topic: Emerging Infectious Diseases Preferred type of presentation: International Scientific Exchange

This abstract has been ACCEPTED.

#0670: Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009

Authors: T. Singeltary; Bacliff, TX/US

Title: Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009

Body: Background

An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.


12 years independent research of available data


I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.


I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries.

I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.

Keywords: Transmissible Spongiform Encephalopathy Creutzfeldt Jakob Disease Prion

page 114 ;

Tuesday, December 12, 2017 

Neuropathology of iatrogenic Creutzfeldt–Jakob disease and immunoassay of French cadaver-sourced growth hormone batches suggest possible transmission of tauopathy and long incubation periods for the transmission of Abeta pathology

Published: 13 December 2018

Transmission of amyloid-β protein pathology from cadaveric pituitary growth hormone

Silvia A. Purro, Mark A. Farrow, Jacqueline Linehan, Tamsin Nazari, David X. Thomas, Zhicheng Chen, David Mengel, Takashi Saito, Takaomi Saido, Peter Rudge, Sebastian Brandner, Dominic M. Walsh & John Collinge Naturevolume 564, pages415–419 (2018) | Download Citation


We previously reported1 the presence of amyloid-β protein (Aβ) deposits in individuals with Creutzfeldt–Jakob disease (CJD) who had been treated during childhood with human cadaveric pituitary-derived growth hormone (c-hGH) contaminated with prions. The marked deposition of parenchymal and vascular Aβ in these relatively young individuals with treatment-induced (iatrogenic) CJD (iCJD), in contrast to other prion-disease patients and population controls, allied with the ability of Alzheimer’s disease brain homogenates to seed Aβ deposition in laboratory animals, led us to argue that the implicated c-hGH batches might have been contaminated with Aβ seeds as well as with prions. However, this was necessarily an association, and not an experimental, study in humans and causality could not be concluded. Given the public health importance of our hypothesis, we proceeded to identify and biochemically analyse archived vials of c-hGH. Here we show that certain c-hGH batches to which patients with iCJD and Aβ pathology were exposed have substantial levels of Aβ40, Aβ42 and tau proteins, and that this material can seed the formation of Aβ plaques and cerebral Aβ−amyloid angiopathy in intracerebrally inoculated mice expressing a mutant, humanized amyloid precursor protein. These results confirm the presence of Aβ seeds in archived c-hGH vials and are consistent with the hypothesized iatrogenic human transmission of Aβ pathology. This experimental confirmation has implications for both the prevention and the treatment of Alzheimer’s disease, and should prompt a review of the risk of iatrogenic transmission of Aβ seeds by medical and surgical procedures long recognized to pose a risk of accidental prion transmission2,3.

SUNDAY, JULY 19, 2020 

Joseph J. Zubak Orthopaedic surgeon passed away Monday, July 6, 2020, Creutzfeldt-Jakob Disease (CJD)


The European Union summary report on surveillance for the presence of transmissible spongiform encephalopathies (TSE) in 2019 First published 17 November 2020


EFSA Annual report of the Scientific Network on BSE-TSE 2020 Singeltary Submission


Human Prion Disease Surveillance in Washington State, 2006-2017


MONDAY, JULY 6, 2020 

Guidance for reporting 2020 surveillance data on Transmissible Spongiform Encephalopathies (TSE)


Cattle Meat and Offal Imported from the United States of America, Canada and Ireland to Japan (Prions) Food Safety Commission of Japan


Why is USDA "only" BSE TSE Prion testing 25,000 samples a year?


O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 

Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 


***thus questioning the origin of human sporadic cases*** 


***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 


***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 


Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,

Natalia Fernandez-Borges a. and Alba Marin-Moreno a

"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France

Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion... Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.

To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.

These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.

Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 

***> why do we not want to do TSE transmission studies on chimpanzees $

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. 

***> I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. 

***> Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.



Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 

***> Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility. <***

Transmission of scrapie prions to primate after an extended silent incubation period 

Emmanuel E. Comoy, Jacqueline Mikol, Sophie Luccantoni-Freire, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Valérie Durand, Capucine Dehen, Olivier Andreoletti, Cristina Casalone, Juergen A. Richt, Justin J. Greenlee, Thierry Baron, Sylvie L. Benestad, Paul Brown & Jean-Philippe Deslys Scientific Reports volume 5, Article number: 11573 (2015) | Download Citation


Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.


Discussion We describe the transmission of spongiform encephalopathy in a non-human primate inoculated 10 years earlier with a strain of sheep c-scrapie. Because of this extended incubation period in a facility in which other prion diseases are under study, we are obliged to consider two alternative possibilities that might explain its occurrence. We first considered the possibility of a sporadic origin (like CJD in humans). Such an event is extremely improbable because the inoculated animal was 14 years old when the clinical signs appeared, i.e. about 40% through the expected natural lifetime of this species, compared to a peak age incidence of 60–65 years in human sporadic CJD, or about 80% through their expected lifetimes. Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.

The second possibility is a laboratory cross-contamination. Three facts make this possibility equally unlikely. First, handling of specimens in our laboratory is performed with fastidious attention to the avoidance of any such cross-contamination. Second, no laboratory cross-contamination has ever been documented in other primate laboratories, including the NIH, even between infected and uninfected animals housed in the same or adjacent cages with daily intimate contact (P. Brown, personal communication). Third, the cerebral lesion profile is different from all the other prion diseases we have studied in this model19, with a correlation between cerebellar lesions (massive spongiform change of Purkinje cells, intense PrPres staining and reactive gliosis26) and ataxia. The iron deposits present in the globus pallidus are a non specific finding that have been reported previously in neurodegenerative diseases and aging27. Conversely, the thalamic lesion was reminiscent of a metabolic disease due to thiamine deficiency28 but blood thiamine levels were within normal limits (data not shown). The preferential distribution of spongiform change in cortex associated with a limited distribution in the brainstem is reminiscent of the lesion profile in MM2c and VV1 sCJD patients29, but interspecies comparison of lesion profiles should be interpreted with caution. It is of note that the same classical scrapie isolate induced TSE in C57Bl/6 mice with similar incubation periods and lesional profiles as a sample derived from a MM1 sCJD patient30.

We are therefore confident that the illness in this cynomolgus macaque represents a true transmission of a sheep c-scrapie isolate directly to an old-world monkey, which taxonomically resides in the primate subdivision (parvorder of catarrhini) that includes humans. With an homology of its PrP protein with humans of 96.4%31, cynomolgus macaque constitutes a highly relevant model for assessing zoonotic risk of prion diseases. Since our initial aim was to show the absence of transmission of scrapie to macaques in the worst-case scenario, we obtained materials from a flock of naturally-infected sheep, affecting animals with different genotypes32. This c-scrapie isolate exhibited complete transmission in ARQ/ARQ sheep (332 ± 56 days) and Tg338 transgenic mice expressing ovine VRQ/VRQ prion protein (220 ± 5 days) (O.. Andreoletti, personal communication). From the standpoint of zoonotic risk, it is important to note that sheep with c-scrapie (including the isolate used in our study) have demonstrable infectivity throughout their lymphoreticular system early in the incubation period of the disease (3 months-old for all the lymphoid organs, and as early as 2 months-old in gut-associated lymph nodes)33. In addition, scrapie infectivity has been identified in blood34, milk35 and skeletal muscle36 from asymptomatic but scrapie infected small ruminants which implies a potential dietary exposure for consumers.

Two earlier studies have reported the occurrence of clinical TSE in cynomolgus macaques after exposures to scrapie isolates. In the first study, the “Compton” scrapie isolate (derived from an English sheep) and serially propagated for 9 passages in goats did not transmit TSE in cynomolgus macaque, rhesus macaque or chimpanzee within 7 years following intracerebral challenge1; conversely, after 8 supplementary passages in conventional mice, this “Compton” isolate induced TSE in a cynomolgus macaque 5 years after intracerebral challenge, but rhesus macaques and chimpanzee remained asymptomatic 8.5 years post-exposure8. However, multiple successive passages that are classically used to select laboratory-adapted prion strains can significantly modify the initial properties of a scrapie isolate, thus questioning the relevance of zoonotic potential for the initial sheep-derived isolate. The same isolate had also induced disease into squirrel monkeys (new-world monkey)9. A second historical observation reported that a cynomolgus macaque developed TSE 6 years post-inoculation with brain homogenate from a scrapie-infected Suffolk ewe (derived from USA), whereas a rhesus macaque and a chimpanzee exposed to the same inoculum remained healthy 9 years post-exposure1. This inoculum also induced TSE in squirrel monkeys after 4 passages in mice. Other scrapie transmission attempts in macaque failed but had more shorter periods of observation in comparison to the current study. Further, it is possible that there are differences in the zoonotic potential of different scrapie strains.

The most striking observation in our study is the extended incubation period of scrapie in the macaque model, which has several implications. Firstly, our observations constitute experimental evidence in favor of the zoonotic potential of c-scrapie, at least for this isolate that has been extensively studied32,33,34,35,36. The cross-species zoonotic ability of this isolate should be confirmed by performing duplicate intracerebral exposures and assessing the transmissibility by the oral route (a successful transmission of prion strains through the intracerebral route may not necessarily indicate the potential for oral transmission37). However, such confirmatory experiments may require more than one decade, which is hardly compatible with current general management and support of scientific projects; thus this study should be rather considered as a case report.

Secondly, transmission of c-BSE to primates occurred within 8 years post exposure for the lowest doses able to transmit the disease (the survival period after inoculation is inversely proportional to the initial amount of infectious inoculum). The occurrence of scrapie 10 years after exposure to a high dose (25 mg) of scrapie-infected sheep brain suggests that the macaque has a higher species barrier for sheep c-scrapie than c-BSE, although it is notable that previous studies based on in vitro conversion of PrP suggested that BSE and scrapie prions would have a similar conversion potential for human PrP38.

Thirdly, prion diseases typically have longer incubation periods after oral exposure than after intracerebral inoculations: since humans can develop Kuru 47 years after oral exposure39, an incubation time of several decades after oral exposure to scrapie would therefore be expected, leading the disease to occur in older adults, i.e. the peak age for cases considered to be sporadic disease, and making a distinction between scrapie-associated and truly sporadic disease extremely difficult to appreciate.

Fourthly, epidemiologic evidence is necessary to confirm the zoonotic potential of an animal disease suggested by experimental studies. A relatively short incubation period and a peculiar epidemiological situation (e.g., all the first vCJD cases occurring in the country with the most important ongoing c-BSE epizootic) led to a high degree of suspicion that c-BSE was the cause of vCJD. Sporadic CJD are considered spontaneous diseases with an almost stable and constant worldwide prevalence (0.5–2 cases per million inhabitants per year), and previous epidemiological studies were unable to draw a link between sCJD and classical scrapie6,7,40,41, even though external causes were hypothesized to explain the occurrence of some sCJD clusters42,43,44. However, extended incubation periods exceeding several decades would impair the predictive values of epidemiological surveillance for prion diseases, already weakened by a limited prevalence of prion diseases and the multiplicity of isolates gathered under the phenotypes of “scrapie” and “sporadic CJD”.

Fifthly, considering this 10 year-long incubation period, together with both laboratory and epidemiological evidence of decade or longer intervals between infection and clinical onset of disease, no premature conclusions should be drawn from negative transmission studies in cynomolgus macaques with less than a decade of observation, as in the aforementioned historical transmission studies of scrapie to primates1,8,9. Our observations and those of others45,46 to date are unable to provide definitive evidence regarding the zoonotic potential of CWD, atypical/Nor98 scrapie or H-type BSE. The extended incubation period of the scrapie-affected macaque in the current study also underscores the limitations of rodent models expressing human PrP for assessing the zoonotic potential of some prion diseases since their lifespan remains limited to approximately two years21,47,48. This point is illustrated by the fact that the recently reported transmission of scrapie to humanized mice was not associated with clinical signs for up to 750 days and occurred in an extreme minority of mice with only a marginal increase in attack rate upon second passage13. The low attack rate in these studies is certainly linked to the limited lifespan of mice compared to the very long periods of observation necessary to demonstrate the development of scrapie. Alternatively, one could estimate that a successful second passage is the result of strain adaptation to the species barrier, thus poorly relevant of the real zoonotic potential of the original scrapie isolate of sheep origin49. The development of scrapie in this primate after an incubation period compatible with its lifespan complements the study conducted in transgenic (humanized) mice; taken together these studies suggest that some isolates of sheep scrapie can promote misfolding of the human prion protein and that scrapie can develop within the lifespan of some primate species.

In addition to previous studies on scrapie transmission to primate1,8,9 and the recently published study on transgenic humanized mice13, our results constitute new evidence for recommending that the potential risk of scrapie for human health should not be dismissed. Indeed, human PrP transgenic mice and primates are the most relevant models for investigating the human transmission barrier. To what extent such models are informative for measuring the zoonotic potential of an animal TSE under field exposure conditions is unknown.. During the past decades, many protective measures have been successfully implemented to protect cattle from the spread of c-BSE, and some of these measures have been extended to sheep and goats to protect from scrapie according to the principle of precaution. Since cases of c-BSE have greatly reduced in number, those protective measures are currently being challenged and relaxed in the absence of other known zoonotic animal prion disease. We recommend that risk managers should be aware of the long term potential risk to human health of at least certain scrapie isolates, notably for lymphotropic strains like the classical scrapie strain used in the current study. Relatively high amounts of infectivity in peripheral lymphoid organs in animals infected with these strains could lead to contamination of food products produced for human consumption. Efforts should also be maintained to further assess the zoonotic potential of other animal prion strains in long-term studies, notably lymphotropic strains with high prevalence like CWD, which is spreading across North America, and atypical/Nor98 scrapie (Nor98)50 that was first detected in the past two decades and now represents approximately half of all reported cases of prion diseases in small ruminants worldwide, including territories previously considered as scrapie free... Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.

Friday, December 14, 2012

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012


In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.

Animals considered at high risk for CWD include:

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.


36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011).

The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE).

Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.


The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).


In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.


In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.


Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.




the feds just released this statement and you should read this very carefully about the mad cow feed ban that never was, and still isn't, and why this is so important, since USDA APHIS ARS Scientist recent transmitted Chronic Wasting Disease CWD TSE Prion, BY ORAL ROUTES, to PIGS AND SHEEP. this is terrible news, and proves the mad cow feed ban never worked, especially since it really never existed;

ponder this; ***> Adriano Aguzzi...''We even showed that a prion AEROSOL will infect 100% of mice within 10 seconds of exposure''


FDA Reports on VFD Compliance

Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary.

***> cattle, pigs, sheep, cwd, tse, prion, oh my!

***> In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). 

Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable.

TUESDAY, APRIL 18, 2017 



Date: Fri, 18 Oct 2002 23:12:22 +0100 

From: Steve Dealler 

Reply-To: Bovine Spongiform Encephalopathy Organization: Netscape Online member 

To: BSE-L@ References: <3daf5023 .4080804="""">

Dear Terry,

An excellent piece of review as this literature is desparately difficult to get back from Government sites.

What happened with the deer was that an association between deer meat eating and sporadic CJD was found in about 1993. The evidence was not great but did not disappear after several years of asking CJD cases what they had eaten. I think that the work into deer disease largely stopped because it was not helpful to the UK industry...and no specific cases were reported. Well, if you dont look adequately like they are in USA currenly then you wont find any!

Steve Dealler =============== 

Stephen Dealler is a consultant medical microbiologist 

BSE Inquiry Steve Dealler

Management In Confidence

BSE: Private Submission of Bovine Brain Dealler

snip...see full text;




Chronic Wasting Disease CWD TSE Prion aka mad cow type disease in cervid Zoonosis Update

***> ''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***

What if?

> However, to date, no CWD infections have been reported in people.
key word here is ‘reported’. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can’t, and it’s as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it’s being misdiagnosed as sporadic CJD. …terry
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
Chronic Wasting Disease CWD TSE Prion aka mad deer disease zoonosis
We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;
(3) Reliable essays can be established to detect CWD infection in humans; and
(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.
Prion 2017 Conference
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 
This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. 
Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. 
At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 
Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice
Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge).
To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years.
After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles.
Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate.
The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.
Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP.
The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD..
***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***
P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States
Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA..
SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD
P172 Peripheral Neuropathy in Patients with Prion Disease
Wang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio..
IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017,
included 104 patients. SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%),
THAT The Majority of cases were male (60%), AND half of them had exposure to wild game.
see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below…terry

1. Interspecies transmission of the chronic wasting disease agent

Justin Greenlee

Virus and Prion Research Unit, National Animal Disease Center, USDA Agriculture Research Service


The presentation will summarize the results of various studies conducted at our research center that assess the transmissibility of the chronic wasting disease (CWD) agent to cattle, pigs, raccoons, goats, and sheep. This will include specifics of the relative attack rates, clinical signs, and microscopic lesions with emphasis on how to differentiate cross-species transmission of the CWD agent from the prion diseases that naturally occur in hosts such as cattle or sheep. Briefly, the relative difficulty of transmitting the CWD agent to sheep and goats will be contrasted with the relative ease of transmitting the scrapie agent to white-tailed deer.

53. Evaluation of the inter-species transmission potential of different CWD isolates

Rodrigo Moralesa, Carlos Kramma,b, Paulina Sotoa, Adam Lyona, Sandra Pritzkowa, Claudio Sotoa

aMitchell Center for Alzheimer’s disease and Related Brain Disorders, Dept. of Neurology, McGovern School of Medicine University of Texas Health Science Center at Houston, TX, USA; bFacultad de Medicina, Universidad de los Andes, Santiago, Chile


Chronic Wasting Disease (CWD) has reached epidemic proportions in North America and has been identified in South Korea and Northern Europe. CWD-susceptible cervid species are known to share habitats with humans and other animals entering the human food chain. At present, the potential of CWD to infect humans and other animal species is not completely clear. The exploration of this issue acquires further complexity considering the differences in the prion protein sequence due to species-specific variations and polymorphic changes within species. While several species of cervids are naturally affected by CWD, white-tailed deer (WTD) is perhaps the most relevant due to its extensive use in hunting and as a source of food. Evaluation of inter-species prion infections using animals or mouse models is costly and time consuming. We and others have shown that the Protein Misfolding Cyclic Amplification (PMCA) technology reproduces, in an accelerated and inexpensive manner, the inter-species transmission of prions while preserving the strain features of the input PrPSc. In this work, we tested the potential of different WTD-derived CWD isolates to transmit to humans and other animal species relevant for human consumption using PMCA. For these experiments, CWD isolates homozygous for the most common WTD-PrP polymorphic changes (G96S) were used (96SS variant obtained from a pre-symptomatic prion infected WTD). Briefly, 96GG and 96SS CWD prions were adapted in homologous or heterologous substrate by PMCA through several (15) rounds. End products, as well as intermediates across the process, were tested for their inter-species transmission potentials. A similar process was followed to assess seed-templated misfolding of ovine, porcine, and bovine PrPC. Our results show differences on the inter-species transmission potentials of the four adapted materials generated (PrPC/PrPSc polymorphic combinations), being the homologous combinations of seed/substrate the ones with the greater apparent zoonotic potential. Surprisingly, 96SS prions adapted in homologous substrate were the ones showing the easiest potential to template PrPC misfolding from other animal species. In summary, our results show that a plethora of different CWD isolates, each comprising different potentials for inter-species transmission, may exist in the environment. These experiments may help to clarify an uncertain and potentially worrisome public health issue. Additional research in this area may be useful to advise on the design of regulations intended to stop the spread of CWD and predict unwanted zoonotic events.

56. Understanding chronic wasting disease spread potential for at-risk species

Catherine I. Cullingham, Anh Dao, Debbie McKenzie and David W. Coltman

Department of Biological Sciences, University of Alberta, Edmonton AB, Canada

CONTACT Catherine I. Cullingham


Genetic variation can be linked to susceptibility or resistance to a disease, and this information can help to better understand spread-risk in a population. Wildlife disease incidence is increasing, and this is resulting in negative impacts on the economy, biodiversity, and in some instances, human health. If we can find genetic variation that helps to inform which individuals are susceptible, then we can use this information on at-risk populations to better manage negative consequences. Chronic wasting disease, a fatal, transmissible spongiform encephalopathy of cervids (both wild and captive), continues to spread geographically, which has resulted in an increasing host-range. The disease agent (PrPCWD) is a misfolded conformer of native cellular protein (PrPC). In Canada, the disease is endemic in Alberta and Saskatchewan, infecting primarily mule deer and white-tail deer, with a smaller impact on elk and moose populations. As the extent of the endemic area continues to expand, additional species will be exposed to this disease, including bison, bighorn sheep, mountain goat, and pronghorn antelope. To better understand the potential spread-risk among these species, we reviewed the current literature on species that have been orally exposed to CWD to identify susceptible and resistant species. We then compared the amino acid polymorphisms of PrPC among these species to determine whether any sites were linked to susceptibility or resistance to CWD infection. We sequenced the entire PrP coding region in 578 individuals across at-risk populations to evaluate their potential susceptibility. Three amino acid sites (97, 170, and 174; human numbering) were significantly associated with susceptibility, but these were not fully discriminating. All but one species among the resistant group shared the same haplotype, and the same for the susceptible species. For the at-risk species, bison had the resistant haplotype, while bighorn sheep and mountain goats were closely associated with the resistant type. Pronghorn antelope and a newly identified haplotype in moose differed from the susceptible haplotype, but were still closely associated with it. These data suggest pronghorn antelope will be susceptible to CWD while bison are likely to be resistant. Based on this data, recommendations can be made regarding species to be monitored for possible CWD infection.

KEYWORDS: Chronic wasting disease; Prnp; wildlife disease; population genetics; ungulates

Thursday, May 23, 2019 

Prion 2019 Emerging Concepts CWD, BSE, SCRAPIE, CJD, SCIENTIFIC PROGRAM Schedule and Abstracts

see full Prion 2019 Conference Abstracts

Cervid to human prion transmission 5R01NS088604-04 Update
snip…full text;
Experts: Yes, chronic wasting disease in deer is a public health issue — for people

Chronic Wasting Disease CWD TSE Prion and THE FEAST 2003 CDC an updated review of the science 2019


Six-year follow-up of a point-source exposure to CWD contaminated venison in an Upstate New York community: risk behaviours and health outcomes 2005–2011

Authors, though, acknowledged the study was limited in geography and sample size and so it couldn't draw a conclusion about the risk to humans. They recommended more study. Dr. Ermias Belay was the report's principal author but he said New York and Oneida County officials are following the proper course by not launching a study. "There's really nothing to monitor presently. No one's sick," Belay said, noting the disease's incubation period in deer and elk is measured in years. "

Transmission Studies

Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS

resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.


Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿ 

Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations

In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species. 

Prions in Skeletal Muscles of Deer with Chronic Wasting Disease 

Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure. 

*** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.

see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”

From: TSS 


Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

Sent: Monday, September 30, 2002 9:22 AM


Dear Sir/Madam,

In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

Ermias Belay, M.D. Centers for Disease Control and Prevention

-----Original Message-----

From: Sent: Sunday, September 29, 2002 10:15 AM


Sunday, November 10, 2002 6:26 PM .......snip........end..............TSS

Thursday, April 03, 2008

A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.


*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,

snip... full text ; 

> However, to date, no CWD infections have been reported in people. 

sporadic, spontaneous CJD, 85%+ of all human TSE, just not just happen. never in scientific literature has this been proven.

if one looks up the word sporadic or spontaneous at pubmed, you will get a laundry list of disease that are classified in such a way;

key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 


*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).*** 

FRIDAY, JULY 26, 2019 

Chronic Wasting Disease in Cervids: Implications for Prion Transmission to Humans and Other Animal Species



***> In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. <***

***> The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.<*** 

***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***

***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.<*** 

***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***

Diagnosis and Reporting of Creutzfeldt-Jakob Disease 

Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA Diagnosis and Reporting of Creutzfeldt-Jakob Disease 

To the Editor: 

In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally. 

Terry S. Singeltary, Sr Bacliff, Tex 

1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323. 

Terry S. Singeltary Sr.