The Lancet Infectious Diseases
Volume 20, Issue 1, January 2020, Pages e2-e10
Journal home page for The Lancet Infectious Diseases
Review
Creutzfeldt-Jakob disease: a systematic review of global incidence, prevalence, infectivity, and incubation
Author links open overlay panelLesleyUttleyPhDaChristopherCarrollPhDaRuthWongPhDaDavid AHiltonMDbProfMattStevensonPhDa
https://doi.org/10.1016/S1473-3099(19)30615-2
Introduction
Creutzfeldt-Jakob disease (CJD) is a progressive, fatal neurodegenerative disease and is caused by misfolded, transmissible proteinaceous infections particles, or prions. The concentration of CJD prions varies throughout the body of an infected individual but is high in the brain and the posterior eye (retina and optic nerve),1, 2 resulting in neurological symptoms, including rapidly progressing dementia, cerebellar and extrapyramidal signs, and myoclonus and visual symptoms. Most people with clinically diagnosed CJD die within a year of symptom onset.1
There are three major groups of human prion disease: sporadic, genetic, and acquired. Sporadic CJD (sCJD) is most common, accounting for about 85% of CJD cases.3 It generally occurs in late middle age; patients have a mean age of 67 years and short survival post-diagnosis of about 4 months. However, there are at least six different clinicopathological CJD subtypes with variable presentations.4, 5 Although there is evidence of a genetic predisposition to sCJD,6 the precise cause of the disorder is unknown.
Genetic forms of CJD are associated with pathogenic mutations in the prion protein gene PRNP and include familial CJD, fatal familial insomnia, and Gerstmann-Schäussler-Scheinker syndrome. Together, genetic forms of CJD account for between 10–15% of prion diseases.
Acquired forms of CJD include Kuru (related to historical ritualistic cannibalism in Papua New Guinea), iatrogenic CJD (iCJD), and variant CJD (vCJD). Cases of vCJD were observed in the UK population after its exposure to bovine spongiform encephalopathy (BSE) during the late 1980s and early 1990s. The disease was presumably transmitted through consumption of BSE-infected beef. The vCJD epidemic peaked in 2000 with 28 deaths in the UK and has since declined with only two definite or probable deaths reported in the UK, three in France, one in Italy, and one in the USA since 2012. Compared with sCJD, vCJD occurs in a younger age group (mean age 26 years at onset) and has a longer clinical manifestation (median 14 months).1 All people who contracted symptomatic vCJD have died. A key pathological finding in people with vCJD is extensive lymphoreticular deposition of prion protein that is not seen in other forms of CJD7 and, notably, this deposition is present during the disease's preclinical phase (figure 1). Most iatrogenic CJD (iCJD) cases have been reported after procedures for dura mater grafts and growth hormone treatment, with a few cases resulting from electroencephalography (EEG), neurosurgery, or receipt of corneal grafts, gonadotrophin, or packed red blood cells.8 Iatrogenic transmission could potentially occur during surgery when instruments are used in high-risk neurosurgical procedures in patients who have asymptomatic CJD but who are infectious because neural tissue has a high infectious load.9
More than 15 years have passed since the vCJD epidemic but iCJD is still a potential public health risk. The long asymptomatic incubation periods noted in some cases of CJD, the difficulties of neutralising prions from neurosurgical instruments,10 the high infectious titres of brain tissue,11 and a presumed subclinical underlying prevalence in the general population12 mean that there is a margin of uncertainty around detecting and quantifying the risk of CJD transmission. The work on this Review updated systematic reviews from 200513 and underlay a wider research project14 that assessed the risk of surgical CJD transmission to inform the UK National Institute of Health and Care Excellence Interventional Procedures guidelines.13 We addressed four topics: the incidence of CJD and the prevalence of CJD-related prions in humans, the risk of secondary transmission of prions from surgery, the infectiousness of CJD by disease subtype, and the incubation periods of CJD. Our topic reviews were informed by best practice guidelines15 and prospectively registered on the PROSPERO database, CRD42017071807. We identified 8776 publications from database searches, 16 from clinical experts, and 25 from the bibliographies of relevant studies. We selected 147 studies that were relevant to our topics, with some papers relevant to more than one review question (figure 2). Full methods and search terms for our systematic review are shown in the appendix.
Incidence of CJD Globally, CJD incidence data are gathered by the CJD International Surveillance Network EuroCJD;16 however, this online resource was last updated in May, 2015. Data obtained through personal communication with EuroCJD were dated to 2018. UK referrals of suspected, definite, or probable CJD-related deaths are recorded by the National CJD Research and Surveillance Unit (NCJDRSU). This source estimates that since 1990 there have been 3873 UK referrals for investigation and 2541 deaths of definite or probable CJD (as of Jan 31, 2019). The global incidence of CJD is typically reported to be around 1–2 cases per million per year,16 on the basis of surveillance studies published from 2005 onward (table 1). Reports of increased incidence might be more probable in areas with access to established surveillance units for referring suspected cases of prion disease. In the UK, since 1990, the NCJDRSU has been mandated to actively monitor and identify all CJD cases. By contrast, a Korean study described that CJD surveillance did not begin in Korea until 2001, and iCJD was not studied in Korea before 2011.22 Geographical variation in how CJD is detected and reported globally is shown in figure 3.
Table 1. Global estimations of CJD incidence by country from studies published in 2005 or after
Period of estimation CJD incidence or mortality per million people
Sporadic CJD
Australia16 1993–2018 1·25
Austria16 1993–2018 1·52
Belgium16 1997–2018 1·17
Canada16 1994–2018 1·05
Czech Republic16 2000–2018 1·20
Cyprus16 1995–2017 1·04
Denmark16 1993–2018 1·47
Estonia16 2004–2018 0·32
Finland16 1997–2017 1·41
France16 1993–2018 1·60
Germany16 1993–2018 1·33
Greece16 1997–2008 0·62
Hungary16 1997–2018 1·07
Italy16 1993–2018 1·42
Netherlands16 1993–2018 1·23
Norway16 1995–2018 1·02
Slovakia16 1993–2018 0·86
Slovenia16 1993–2018 1·46
Spain16 1993–2018 1·28
Switzerland16 1993–2018 1·73
Taiwan17 1998–2007 0·55
UK18 1993–2018 1·24
Excluding vCJD
Germany16 1993–2017 1·33
Hungary16 1997–2018 1·07
Netherlands16 1993–2018 1·23
Sweden16 1997–2017 1·42
USA19 2016 1·22
All CJD types
Argentina20 2008 0·85
Japan21 1999–2015 1·3
CJD=Creutzfeldt-Jakob disease. vCJD=variant CJD.
map
https://ars.els-cdn.com/content/image/1-s2.0-S1473309919306152-gr3_lrg.jpg
The number of deaths between 1990 and 2018 that were attributed to definite or probable CJD are recorded in the UK by the NCJDRSU (data captured Jan 31, 2019; figure 4).18 A steady increase in sCJD cases is apparent over the 28-year period, whereas cases of iatrogenic, genetic, and variant forms have remained low. Unpublished data from the EuroCJD network obtained through personal communication provides estimates for 12 other countries across three continents with data from the same time period of 1996–2018 (figure 5). A less pronounced, but relatively consistent increase in sporadic CJD cases can also be seen with the apparent reduction in cases from 2018, which can be attributed to a delay in obtaining definitive data for the most recent year.
Figure 5. Deaths from probable or definite sporadic Creutzfeldt-Jakob disease in countries with data for 1996–2018 reported by the EuroCJD network
Possible explanations for the increase in the detection of sCJD cases include: improved clinician awareness; an age-specific incidence increase in people aged 55 years and older; an ageing population; population increase; changes to the sporadic case definition; and improvements in diagnostic testing to include cerebrospinal fluid and MRI diagnostic tests. The gradual increase in the incidence of sCJD, but not that of genetic CJD supports the notion that it is a result of the globally ageing population. The increase in sCJD cases only could be taken as evidence that there is a real increase in sCJD.
Case ascertainment is likely to improve in areas where CJD surveillance is strong, where health professionals are increasingly aware of CJD, and where there are more neurologists. This notion is supported by studies in Australia indicating that the intensity of surveillance can impact the estimated incidence of this rare disease.24, 25 Moreover, in the UK, because of the potential for iatrogenic transmission of vCJD, there has been a focused collaborative effort to examine evidence of transmission through different exposures by investigating links to confirmed cases through retrospective studies.26 The most detailed academic analyses appear to originate from and around countries that have experienced a CJD epidemic or incidences of iCJD (ie, UK, France, USA, and Japan). Published reports of increased incidence of sCJD were noted from other countries. In Finland, an increased incidence of sCJD was noted for the 1974–89 period of 0·6 per million to 1·36–1·44 per million in 2007–13.27 Additionally, one study reported that sCJD incidence in Taiwan doubled between 2008 and 2015.28
Confirmation of CJD from autopsy or brain biopsy is required to obtain a definitive sCJD diagnosis. However, autopsy is not routinely done on patients with sCJD. Only about 50% of all deceased patients in the UK referred to the NCJDRSU are autopsied1 and this rate is potentially decreasing.4 The most recent UK case of vCJD appeared, on clinical presentation and neuroimaging, to be sCJD, but as the age of the patient was atypically young (36 years), a neuropathological examination after their death in February, 2016, confirmed vCJD despite the fact that the patient did not exhibit clinical and epidemiological diagnostic signs for probable or possible vCJD.29 On the basis of this vCJD case, pathological examination of every sCJD case would be necessary to know the true numbers of patients with autopsy-proven sCJD and vCJD. Given this scenario, an alternative possible explanation for the increasing number of sCJD cases in the UK over the past 20 years could be that the altered incubation and clinical presentation of acquired CJD (vCJD or iCJD) appear to mimic sCJD or another neurological condition, as has been shown in murine models.30 Global differences in pursuing autopsy to confirm any CJD diagnosis and subtype also probably exist, depending on national CJD surveillance protocols and differences in practice and approach.31, 32, 33
Because the onset of sCJD symptoms occur in people with an older mean age (67 years) than other forms of CJD, it is possible that sCJD cases might be concealed among cases of more commonly encountered but similarly rapidly progressing neurological conditions that affect older people. Numerous reports were noted of sCJD mimicking other conditions including stroke,34, 35 acute neuropathy,36 hyperparathyroidism,37 general dementia,33, 38, 39, 40, 41 dementia with Lewy bodies,33 encephalitis,33 aphasia,42 Alzheimer's disease,33, 40 psychiatric decompensation,32 and movement disorder.33 The potential for CJD cases to be misdiagnosed was first shown in a 1995 study, in which only about 60% of cases of prion disease were identified clinically during life after an analysis of tissue samples from patients who had died from dementia.44 Therefore, the reported incidence of any type of CJD could still be an underestimate of the actual incidence of deaths due to CJD, in the absence of definitive pathological examination of all cases. It is also plausible that numerous cases of sCJD that occur late in life, particularly in settings where access to clinicians with experience of diagnosing CJD is inadequate, are being misclassified as other neurodegenerative disorders.
The annual number of confirmed cases of clinical vCJD has declined globally since 2005. As of 2016, the NCJDRSU recorded 178 cases of vCJD in the UK. A further 53 cases have been reported from other countries, bringing the global total of clinical vCJD cases to 231.18 Between 2005 and 2014, 68 vCJD cases were reported from 11 countries.16 Three of the 178 UK cases that occurred up to 2016 are considered to have resulted from blood transfusion.4 In the fourth case of vCJD transmission through blood transfusion, vCJD was identified in the spleen of an individual (heterozygous at codon 129), who died of a non-CJD-related cause and was considered to have had preclinical vCJD.45
The most common causes of iCJD are injections of human growth hormones (hGH) and dura mater grafts obtained from human cadavers. A review of worldwide iCJD cases in 2012 identified 469 cases from dura mater grafts (n=228), hGH injections (n=226), gonadotropin injections (n=4), contaminated surgical instruments (n=4), contaminated EEG needles (n=2), packed red blood cells (n=3), and corneal transplants (n=2).8 A more recent review by the NCJDRSU of 85 UK iCJD cases between 1970 and 2016 found eight from dura mater grafts, 76 from hGH injections, and one from a human gonadotrophin injection.18 All of these patients have died at a mean age of 35 years (range 20–51) for those injected with hormones and 47 years (range 27–78) for those receiving dura matter grafts.
No direct cases of surgically acquired CJD have been noted since 2005.8 Four historic cases between 1952 and 1974 (three in the UK and one in France) occurred before the vCJD epidemic and when methods for cleaning surgical instruments were less rigorous than current decontamination standards. Consequently, the risk of transmission of all types directly apportioned to surgery appears currently to be low. As sCJD is idiopathic, its aetiological basis is presumed to be spontaneous, but the validity of this assumption is uncertain.46 12 publications between 2005 and 2017 implicate a potential relationship between past neurosurgery and sCJD incidence. These include four case reports,47, 48, 49, 50, 51 a surveillance study,52 and six case-control studies.53, 54, 55, 56, 57, 58, 59, 60 Case-control studies are a frequently encountered design in estimating possible and plausible risk factors for sCJD. Some concerns have been expressed about potential biases affecting CJD case-control studies and their validity61 that could be undermined by: selection of control cases, assessing exposure in lifetime periods of different duration, disregarding at-risk periods for exposure in control patients, asymmetry in case and control data, and confounding by concomitant blood transfusion or surgery at the time of clinical onset.
Prevalence of subclinical vCJD In vCJD, prions appear to replicate extensively in lymphoid tissue early in the disease process and, therefore, the tonsils and appendix are some of the earliest sites that can be used to assess abnormal prion accumulation. Such abnormal accumulation before the onset of clinical symptoms is regarded as subclinical vCJD and is thought to represent a potential background, albeit low, level of infection in the population.62 The infectious load of prions is known to be increased in certain tissues, such as the CNS in the symptomatic phase of disease,63 and therefore the risk of infectivity from peripheral tissue has been questioned.64, 65, 66, 67
The hypothesis of zoonotic transmission through dietary exposure from the BSE outbreak is largely upheld as the most plausible route of vCJD infection in humans and transmission has been replicated in wild-type mice.68 An analysis of excised peripheral tissues from the Appendix II general population study done by Gill and colleagues69 found subclinical prion accumulation in patient cohorts born in 1941–60 and 1961–85.69 Detection of abnormal prion accumulation in appendix samples from these two cohorts resulted in a central estimation of 493 cases per million people (95% CI 282–801) for populations exposed to the BSE epidemic. The subsequent Appendix III study using immunohistochemical staining of appendices from two birth cohorts (table 2)70, 71 estimated a central prevalence of asymptomatic carriers of vCJD in the UK population (who had been presumed to be unexposed to BSE) of approximately 240 per million (95% CI 16–492).5
Table 2. Results of the Appendix III study69
Immunohistochemistry results
Central estimate
Appendices removed between 1970–79 and before the BSE epidemic Two positive samples from 14 692 appendices
One in 7000
Appendices removed from patients born after Jan 1, 1996, and after measures to remove BSE were in place Five positive samples from 14 824 appendices
One in 3000
BSE=bovine spongiform encephalopathy.
The presence of stained appendices positive for abnormal prion accumulation in the 1941–60 and 1961–85 cohorts of people who were not considered to have had exposure to BSE suggests that there is either low background staining of abnormal prion protein in human lymphoid tissue that might not represent subclinical vCJD and would be unlikely to progress to vCJD, or that the BSE epidemic was longer than previously thought.70 Moreover, planned statistical analysis found no significant difference between the prevalence observed in the cohort considered to be most at risk to the BSE epidemic, as described as by Gill and colleagues,69 and the prevalence observed in the Appendix III study.70
Infectivity of CJD Methionine homozygosity at PRNP codon 129 is considered to be the most susceptible genotype for developing CJD, with sCJD and vCJD occurring mostly in such individuals. In sCJD, both methionine and valine homozygotes at codon 129 are at increased risk of the disease.72 In northern Europe, the methionine homozygous genotype represents 38% of the general population, whereas 11% of people carry the valine homozygosity genotype and 51% are heterozygous for methionine and valine at codon 129.73
The first indication that valine homozygotes are also susceptible to vCJD infection came from a re-analysis of appendices74 from the cohort of 12 674 appendix and tonsil samples analysed by Hilton and colleagues.12 Of this cohort, only three appendix samples were positive for disease-associated prion protein (PrPd), and that two of the three samples were valine homozygotes. Although heterozygosity at PRNP codon 129 was previously believed to confer complete resistance to both sporadic and acquired prion disease,75 the most recent case of clinical vCJD in 2016 was heterozygous.29 Another earlier possible vCJD case in 2008 was also heterozygous,76 but diagnosis was not confirmed by autopsy. Case reports have also found subclinical iCJD in heterozygous individuals,45, 77 highlighting their susceptibility, albeit at a lower level than homozygotes. A study in mice supports the notion that transmission efficiency of vCJD is greatest in methionine homozygotes, but indicated that all three genotypes are susceptible, with the heterozygous and valine homozygous genotypes conferring apparent reduced transmission efficiency and longer asymptomatic incubation periods than the methionine homozygous genotype.78
Knowing whether and when asymptomatic carriers of CJD become infectious is important in understanding the potential risks of iatrogenic transmission. Bougard and colleagues79 describe an assay that detected prions in plasma samples from two blood donors who developed vCJD 1·3 and 2·6 years before clinical onset.79 The authors report that the assay is able to identify presymptomatic (n=2) and symptomatic (n=18) vCJD positives in a masked cohort of 256 plasma samples comprising sCJD, Alzheimer's disease, Parkinson's disease, other neurological diseases, and healthy controls, demonstrating the possibility of detecting incubating or silent carriage of vCJD prions in blood and highlighting the potential risk of transmission via blood products.
The ability to detect prion accumulation depends on the sensitivity of the CJD assay.80 For example, the heterozygous patient with clinical vCJD identified in 2016 tested negative for 14-3-3 protein and for misfolded PrP as detected by real time quaking-induced conversion (RT-QuIC) and the vCJD-focused direct detection assay, but immunoblotting of brain homogenate at autopsy confirmed the presence of vCJD prions.29 Moreover, immunostaining of this patient's tissues for abnormal prion-protein-labelled amyloid plaques highlighted a relative lack of peripheral tissue involvement, with only minute amounts detected in the spleen and no detection in the appendix or mesenteric lymph nodes. However, Douet and colleagues81 used a highly sensitive protein misfolding cyclic amplification assay to assess abnormal prion accumulation in an 82-year-old heterozygous patient with subclinical vCJD.81 Previous investigations had not detected abnormal prion protein accumulation in the brain or infectivity of brain tissue at the time of death,45, 65 but using this assay, Douet and colleagues found vCJD prions in all lymphoid organs and many other tissues, including the salivary glands, lungs, and liver. The identification of extensive vCJD involvement in the peripheral tissues of a patient with subclinical disease provides further evidence of the potential for iatrogenic transmission of CJD through surgical procedures.
Incubation periods Reported incubation periods of iCJD in humans range from 1 to 42 years.8, 77, 82, 83, 84, 85, 86, 87, 88 The shortest durations occurred in surgically transmitted CJD and the longest occurred in Kuru or iCJD via hGH injection. Diagnosis of definite or probable iCJD depends on correct identification of the probable source of contamination to which patients have been exposed.
Different incubation times might occur because of the resistance of different genotypes. Evidence from Kuru studies82, 89 indicates that incubation times are shorter, and mortality risk is significantly greater in homozygous individuals than heterozygotes, as older survivors are more likely to be heterozygous.85, 86 However, data from hGH studies suggest longer incubation times for methionine homozygote patients and shorter times for valine homozygotes. Where proportions of heterozygotes and homozygotes are similar across countries or groups, but incubation times are different, it has been proposed that differences in incubation times might be due to infection with different strains or subtypes of the CJD prion.84, 88 For example, most cases of iCJD caused by hGH in France were in methionine homozygotes, whereas in the UK, the valine homozygous and the heterozygous genotypes predominate. Infections that appear to affect people with certain genotypes in a specific setting might reflect an absence of genotypic resistance to a particular strain, resulting in shorter incubation times.88 Hence, it is possible that the methionine homozygous genotype in the UK hGH-iCJD cohort had the longest incubation times because the infectious strain was of the valine homozygous or the heterozygous genotype. Other possible factors that could influence the duration of the incubation period include increased infectious doses or differences in the way in which the incubation period was recorded and reported in the studies. For example, in cases in which the precise date of contamination is known, incubation times appear to be shorter.8
Discussion The prevalence of subclinical vCJD from pathological surveys suggests a constant underlying rate of abnormal prion accumulation in lymphoreticular tissue in the UK population, which might or might not represent disease that will progress to clinical vCJD. Surgical procedures (other than high-risk procedures) that could be regarded as risky for iatrogenic transmission include appendectomy or tonsillectomy. However, no direct evidence currently exits to show that there is risk of transmission from surgical procedures involving tissues that are not high-risk.
When opportunities for CJD transmission occur, a range of factors probably influence how the disease will manifest itself in terms of clinical phenotype, neuropathological pattern, incubation period, and duration. These factors include an interaction between the genotype at PRNP codon 129, the infecting prion strain, the route of transmission, and the location of prion protein conversion. Moreover, the method of detection and analysis of CJD is crucial to obtaining detailed and accurate neuropathological confirmation of CJD type for the most plausible explanations for acquisition of iCJD. Global variations in the detection of this rare disease are expected, given the different surveillance programmes and detection assays used.
Our Review provides an updated, comprehensive, and interdisciplinary profile on the nature and occurrence of CJD globally. The methods aimed to include any relevant study design, from any source or discipline, that was relevant to our review questions. Although narrative reviews focusing on one type of CJD have been published previously,8, 46 our Review provides a complete overview of the trends in all types of CJD from current evidence. Input from clinical experts was sought to ensure that the reviews were objective, rigorous, and applicable.
A limitation to our Review is that we did not include studies published before 2005 but we did include data from retrieved sources with information before 2005. We used the context of knowledge available from the previous reviews and, as detection and reporting of CJD has improved, we consider our focus on the most recent evidence to be appropriate. The reliance on case-control studies and the problems of retrospective, observational designs were discussed. As a result, the analysis is restricted to a narrative, as formal statistical aggregation of data was not possible given the scarce presentation of CJD. However, we believe that the comprehensive and flexible design of this Review was appropriate to provide a clinical overview on this rare but highly infectious disease.
Clinical trials in patients with CJD have been attempted90 but are not a feasible recommendation for understanding the epidemiological patterns of CJD in humans. Prospective national surveillance that follows referrals of possible or probable cases of CJD through to confirmed cases of CJD and international agreement on standard analytics for CJD detection could improve reporting in countries that have allocated resources for surveillance.
Search strategy and selection criteria We searched MEDLINE (Ovid), EMBASE: (Ovid), Science Citation Index (SCI-E), Conference Proceedings Citation Index (CPCI), and Web of Science for articles published between Jan 1, 2005, and Dec 31, 2017 with the terms “incidence”, “prevalence”, “incubation”, and “infectivity” plus their synonyms were combined with “CJD” population terms. However, the goal of our Review was to include the most recent available data (published and unpublished); therefore, surveillance data retrieved after the date of the searches were also included from national surveillance registries and papers retrieved from contact with experts. Searches were not limited by language. The UK National Institute of Health and Care Excellence Interventional Procedures committee were also consulted as topic experts for potentially relevant papers. Included papers were subject to bibliography checking and our search strategy was revised in response to relevant studies not captured by the original searches. Eligible studies were of humans with Creutzfeldt-Jakob disease (CJD) or related prions in tissue, including in-vivo or in-vitro studies, observational studies, retrospective reviews, case series and reports, national surveillance reports, unpublished registry data, and pathological surveys. Ineligible studies were of laboratory parameters only, animal data without implications to humans, discussions or guidance without empirical data, superseded data, treatment or care of patients with CJD, filtering blood for transfusion or other blood products, and prion diseases without specific mention of CJD. Articles were imported into the reference management software EndNote (version 8) and duplicates were removed. Titles and abstracts of retrieved records were examined by LU and non-relevant citations excluded. 10% of randomly selected excluded citations were double-checked by CC and any disagreements were resolved by discussion between reviewers. Data from all countries were included.
Contributors
LU designed the study and wrote the draft manuscript. LU and CC did the systematic reviews. RW searched the literature. CC, MS, and DAH provided comments on the manuscript. All authors critically reviewed the methods and results and contributed to writing the report.
Declaration of interests
We declare no competing interests.
Acknowledgments
This work underpinning this Review was funded by the UK National Institute for Health Research Health Technology Assessment Programme (project number 17/48/01). The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and final responsibility for the decision to submit for publication. We acknowledge the UK National Institute for Health Care and Excellence Interventional Procedures committee members for their input and recommendations for relevant data.
Supplementary Material
https://ars.els-cdn.com/content/image/1-s2.0-S1473309919306152-mmc1.pdf
Supplementary appendix.
References
snip...full text;
remember, all iatrogenic cjd is, is sporadic cjd, before the iatrogenic event is discovered, traced back, proven, documented, put into the academic domain, and then finally the public domain, this very seldom happens, thus problem solved, it's all sporadic cjd, PLUS, SPORADIC CJD HAS NOW BEEN LINKED TO ATYPICAL AND TYPICAL BSE, SCRAPIE, AND NOW CWD. with zoonosis of cwd, the way that tse spreads in cervids, we can only hope that this does not happen with humans, if and when, if cwd has not already, jumped species barrier. the thought now of cwd transmitting to pigs by oral routes is terrible news...terry
http:// https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(19)30615-2/fulltext
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(19)30615-2/fulltext
remember, all iatrogenic cjd is, is sporadic cjd, before the iatrogenic event is discovered, traced back, proven, documented, put into the academic domain, and then finally the public domain, this very seldom happens, thus problem solved, it's all sporadic cjd, PLUS, SPORADIC CJD HAS NOW BEEN LINKED TO ATYPICAL AND TYPICAL BSE, SCRAPIE, AND NOW CWD. with zoonosis of cwd, the way that tse spreads in cervids, we can only hope that this does not happen with humans, if and when, if cwd has not already, jumped species barrier. the thought now of cwd transmitting to pigs by oral routes is terrible news...terry
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(19)30615-2/fulltext
remember, all iatrogenic cjd is, is sporadic cjd, before the iatrogenic event is discovered, traced back, proven, documented, put into the academic domain, and then finally the public domain, this very seldom happens, thus problem solved, it's all sporadic cjd, PLUS, SPORADIC CJD HAS NOW BEEN LINKED TO ATYPICAL AND TYPICAL BSE, SCRAPIE, AND NOW CWD. with zoonosis of cwd, the way that tse spreads in cervids, we can only hope that this does not happen with humans, if and when, if cwd has not already, jumped species barrier. the thought now of cwd transmitting to pigs by oral routes is terrible news...terry
doi:10.1016/S1473-3099(03)00715-1 Copyright © 2003 Published by Elsevier Ltd. Newsdesk
Tracking spongiform encephalopathies in North America
Xavier Bosch
Available online 29 July 2003.
Volume 3, Issue 8, August 2003, Page 463
“My name is Terry S Singeltary Sr, and I live in Bacliff, Texas. I lost my mom to hvCJD (Heidenhain variant CJD) and have been searching for answers ever since. What I have found is that we have not been told the truth. CWD in deer and elk is a small portion of a much bigger problem..” ...
***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. <***
ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION
10. ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION AKA MAD DEER ELK DISEASE IN HUMANS, has it already happened, that should be the question...
''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II)
EFSA Panel on Biological Hazards (BIOHAZ) Antonia Ricci Ana Allende Declan Bolton Marianne Chemaly Robert Davies Pablo Salvador Fernández Escámez ... See all authors
First published: 17 January 2018 https://doi.org/10.2903/j.efsa.2018.5132 ;
also, see;
8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers.. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available.
snip...
The tissue distribution of infectivity in CWD‐infected cervids is now known to extend beyond CNS and lymphoid tissues. While the removal of these specific tissues from the food chain would reduce human dietary exposure to infectivity, exclusion from the food chain of the whole carcass of any infected animal would be required to eliminate human dietary exposure.
***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***
REVIEW
***> In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. <***
***> The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.<***
***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***
***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.<***
***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***
Thursday, March 8, 2018
Familial human prion diseases associated with prion protein mutations Y226X and G131V are transmissible to transgenic mice expressing human prion protein
ZOONOSIS OF BSE, CWD, SCRAPIE TSE PRION
Chronic Wasting Disease CWD TSE Prion
Cervid to human prion transmission
Kong, Qingzhong Case Western Reserve University, Cleveland, OH, United States
We hypothesize that:
(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;
(3) Reliable essays can be established to detect CWD infection in humans; and
(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.
(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;
(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;
(3) Reliable essays can be established to detect CWD infection in humans; and
(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.
ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE
here is the latest;
PRION 2018 CONFERENCE
Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice
Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge).
To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years.
After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles.
Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate.
The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.
Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP.
The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD..
***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***
https://prion2018.org/
READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT from this study ;
P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States
Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA..
SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD
states.
AND ANOTHER STUDY;
P172 Peripheral Neuropathy in Patients with Prion Disease
Wang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio..
IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017,
AND
included 104 patients. SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%),
AND
THAT The Majority of cases were male (60%), AND half of them had exposure to wild game.
snip...
see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below...terry
https://prion2018.org/wp-content/uploads/2018/05/program.pdf
https://prion2018.org/
THURSDAY, OCTOBER 04, 2018
Cervid to human prion transmission 5R01NS088604-04 Update
http://grantome.com/grant/NIH/R01-NS088604-04
http://chronic-wasting-disease.blogspot.com/2018/10/cervid-to-human-prion-transmission.html
snip...full text;
SATURDAY, FEBRUARY 09, 2019
Experts: Yes, chronic wasting disease in deer is a public health issue — for people
FRIDAY, JULY 26, 2019
Chronic Wasting Disease in Cervids: Implications for Prion Transmission to Humans and Other Animal Species
O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations
Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France
Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases).
Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.
*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,
***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),
***is the third potentially zoonotic PD (with BSE and L-type BSE),
***thus questioning the origin of human sporadic cases.
We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.
===============
***thus questioning the origin of human sporadic cases***
===============
***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.
==============
***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
PRION 2016 TOKYO
Saturday, April 23, 2016
SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016
Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online
Taylor & Francis
Prion 2016 Animal Prion Disease Workshop Abstracts
WS-01: Prion diseases in animals and zoonotic potential
Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,
Natalia Fernandez-Borges a. and Alba Marin-Moreno a
"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France
Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion... Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.
To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.
These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.
Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice.
Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion.
These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.
***> why do we not want to do TSE transmission studies on chimpanzees $
5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man.
***> I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough.
***> Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.
snip...
R. BRADLEY
Title: Transmission of scrapie prions to primate after an extended silent incubation period)
*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.
*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.
*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.
***> Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility. <***
Transmission of scrapie prions to primate after an extended silent incubation period
Emmanuel E. Comoy, Jacqueline Mikol, Sophie Luccantoni-Freire, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Valérie Durand, Capucine Dehen, Olivier Andreoletti, Cristina Casalone, Juergen A. Richt, Justin J. Greenlee, Thierry Baron, Sylvie L. Benestad, Paul Brown & Jean-Philippe Deslys Scientific Reports volume 5, Article number: 11573 (2015) | Download Citation
Abstract
Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.
SNIP...
Discussion We describe the transmission of spongiform encephalopathy in a non-human primate inoculated 10 years earlier with a strain of sheep c-scrapie. Because of this extended incubation period in a facility in which other prion diseases are under study, we are obliged to consider two alternative possibilities that might explain its occurrence. We first considered the possibility of a sporadic origin (like CJD in humans). Such an event is extremely improbable because the inoculated animal was 14 years old when the clinical signs appeared, i.e. about 40% through the expected natural lifetime of this species, compared to a peak age incidence of 60–65 years in human sporadic CJD, or about 80% through their expected lifetimes. Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.
The second possibility is a laboratory cross-contamination. Three facts make this possibility equally unlikely. First, handling of specimens in our laboratory is performed with fastidious attention to the avoidance of any such cross-contamination. Second, no laboratory cross-contamination has ever been documented in other primate laboratories, including the NIH, even between infected and uninfected animals housed in the same or adjacent cages with daily intimate contact (P. Brown, personal communication). Third, the cerebral lesion profile is different from all the other prion diseases we have studied in this model19, with a correlation between cerebellar lesions (massive spongiform change of Purkinje cells, intense PrPres staining and reactive gliosis26) and ataxia. The iron deposits present in the globus pallidus are a non specific finding that have been reported previously in neurodegenerative diseases and aging27. Conversely, the thalamic lesion was reminiscent of a metabolic disease due to thiamine deficiency28 but blood thiamine levels were within normal limits (data not shown). The preferential distribution of spongiform change in cortex associated with a limited distribution in the brainstem is reminiscent of the lesion profile in MM2c and VV1 sCJD patients29, but interspecies comparison of lesion profiles should be interpreted with caution. It is of note that the same classical scrapie isolate induced TSE in C57Bl/6 mice with similar incubation periods and lesional profiles as a sample derived from a MM1 sCJD patient30.
We are therefore confident that the illness in this cynomolgus macaque represents a true transmission of a sheep c-scrapie isolate directly to an old-world monkey, which taxonomically resides in the primate subdivision (parvorder of catarrhini) that includes humans. With an homology of its PrP protein with humans of 96.4%31, cynomolgus macaque constitutes a highly relevant model for assessing zoonotic risk of prion diseases. Since our initial aim was to show the absence of transmission of scrapie to macaques in the worst-case scenario, we obtained materials from a flock of naturally-infected sheep, affecting animals with different genotypes32. This c-scrapie isolate exhibited complete transmission in ARQ/ARQ sheep (332 ± 56 days) and Tg338 transgenic mice expressing ovine VRQ/VRQ prion protein (220 ± 5 days) (O. Andreoletti, personal communication). From the standpoint of zoonotic risk, it is important to note that sheep with c-scrapie (including the isolate used in our study) have demonstrable infectivity throughout their lymphoreticular system early in the incubation period of the disease (3 months-old for all the lymphoid organs, and as early as 2 months-old in gut-associated lymph nodes)33. In addition, scrapie infectivity has been identified in blood34, milk35 and skeletal muscle36 from asymptomatic but scrapie infected small ruminants which implies a potential dietary exposure for consumers.
Two earlier studies have reported the occurrence of clinical TSE in cynomolgus macaques after exposures to scrapie isolates. In the first study, the “Compton” scrapie isolate (derived from an English sheep) and serially propagated for 9 passages in goats did not transmit TSE in cynomolgus macaque, rhesus macaque or chimpanzee within 7 years following intracerebral challenge1; conversely, after 8 supplementary passages in conventional mice, this “Compton” isolate induced TSE in a cynomolgus macaque 5 years after intracerebral challenge, but rhesus macaques and chimpanzee remained asymptomatic 8.5 years post-exposure8. However, multiple successive passages that are classically used to select laboratory-adapted prion strains can significantly modify the initial properties of a scrapie isolate, thus questioning the relevance of zoonotic potential for the initial sheep-derived isolate. The same isolate had also induced disease into squirrel monkeys (new-world monkey)9. A second historical observation reported that a cynomolgus macaque developed TSE 6 years post-inoculation with brain homogenate from a scrapie-infected Suffolk ewe (derived from USA), whereas a rhesus macaque and a chimpanzee exposed to the same inoculum remained healthy 9 years post-exposure1. This inoculum also induced TSE in squirrel monkeys after 4 passages in mice. Other scrapie transmission attempts in macaque failed but had more shorter periods of observation in comparison to the current study. Further, it is possible that there are differences in the zoonotic potential of different scrapie strains.
The most striking observation in our study is the extended incubation period of scrapie in the macaque model, which has several implications. Firstly, our observations constitute experimental evidence in favor of the zoonotic potential of c-scrapie, at least for this isolate that has been extensively studied32,33,34,35,36. The cross-species zoonotic ability of this isolate should be confirmed by performing duplicate intracerebral exposures and assessing the transmissibility by the oral route (a successful transmission of prion strains through the intracerebral route may not necessarily indicate the potential for oral transmission37). However, such confirmatory experiments may require more than one decade, which is hardly compatible with current general management and support of scientific projects; thus this study should be rather considered as a case report.
Secondly, transmission of c-BSE to primates occurred within 8 years post exposure for the lowest doses able to transmit the disease (the survival period after inoculation is inversely proportional to the initial amount of infectious inoculum). The occurrence of scrapie 10 years after exposure to a high dose (25 mg) of scrapie-infected sheep brain suggests that the macaque has a higher species barrier for sheep c-scrapie than c-BSE, although it is notable that previous studies based on in vitro conversion of PrP suggested that BSE and scrapie prions would have a similar conversion potential for human PrP38.
Thirdly, prion diseases typically have longer incubation periods after oral exposure than after intracerebral inoculations: since humans can develop Kuru 47 years after oral exposure39, an incubation time of several decades after oral exposure to scrapie would therefore be expected, leading the disease to occur in older adults, i.e. the peak age for cases considered to be sporadic disease, and making a distinction between scrapie-associated and truly sporadic disease extremely difficult to appreciate.
Fourthly, epidemiologic evidence is necessary to confirm the zoonotic potential of an animal disease suggested by experimental studies. A relatively short incubation period and a peculiar epidemiological situation (e.g., all the first vCJD cases occurring in the country with the most important ongoing c-BSE epizootic) led to a high degree of suspicion that c-BSE was the cause of vCJD. Sporadic CJD are considered spontaneous diseases with an almost stable and constant worldwide prevalence (0.5–2 cases per million inhabitants per year), and previous epidemiological studies were unable to draw a link between sCJD and classical scrapie6,7,40,41, even though external causes were hypothesized to explain the occurrence of some sCJD clusters42,43,44. However, extended incubation periods exceeding several decades would impair the predictive values of epidemiological surveillance for prion diseases, already weakened by a limited prevalence of prion diseases and the multiplicity of isolates gathered under the phenotypes of “scrapie” and “sporadic CJD”.
Fifthly, considering this 10 year-long incubation period, together with both laboratory and epidemiological evidence of decade or longer intervals between infection and clinical onset of disease, no premature conclusions should be drawn from negative transmission studies in cynomolgus macaques with less than a decade of observation, as in the aforementioned historical transmission studies of scrapie to primates1,8,9. Our observations and those of others45,46 to date are unable to provide definitive evidence regarding the zoonotic potential of CWD, atypical/Nor98 scrapie or H-type BSE. The extended incubation period of the scrapie-affected macaque in the current study also underscores the limitations of rodent models expressing human PrP for assessing the zoonotic potential of some prion diseases since their lifespan remains limited to approximately two years21,47,48. This point is illustrated by the fact that the recently reported transmission of scrapie to humanized mice was not associated with clinical signs for up to 750 days and occurred in an extreme minority of mice with only a marginal increase in attack rate upon second passage13. The low attack rate in these studies is certainly linked to the limited lifespan of mice compared to the very long periods of observation necessary to demonstrate the development of scrapie. Alternatively, one could estimate that a successful second passage is the result of strain adaptation to the species barrier, thus poorly relevant of the real zoonotic potential of the original scrapie isolate of sheep origin49. The development of scrapie in this primate after an incubation period compatible with its lifespan complements the study conducted in transgenic (humanized) mice; taken together these studies suggest that some isolates of sheep scrapie can promote misfolding of the human prion protein and that scrapie can develop within the lifespan of some primate species.
In addition to previous studies on scrapie transmission to primate1,8,9 and the recently published study on transgenic humanized mice13, our results constitute new evidence for recommending that the potential risk of scrapie for human health should not be dismissed. Indeed, human PrP transgenic mice and primates are the most relevant models for investigating the human transmission barrier. To what extent such models are informative for measuring the zoonotic potential of an animal TSE under field exposure conditions is unknown. During the past decades, many protective measures have been successfully implemented to protect cattle from the spread of c-BSE, and some of these measures have been extended to sheep and goats to protect from scrapie according to the principle of precaution. Since cases of c-BSE have greatly reduced in number, those protective measures are currently being challenged and relaxed in the absence of other known zoonotic animal prion disease. We recommend that risk managers should be aware of the long term potential risk to human health of at least certain scrapie isolates, notably for lymphotropic strains like the classical scrapie strain used in the current study. Relatively high amounts of infectivity in peripheral lymphoid organs in animals infected with these strains could lead to contamination of food products produced for human consumption. Efforts should also be maintained to further assess the zoonotic potential of other animal prion strains in long-term studies, notably lymphotropic strains with high prevalence like CWD, which is spreading across North America, and atypical/Nor98 scrapie (Nor98)50 that was first detected in the past two decades and now represents approximately half of all reported cases of prion diseases in small ruminants worldwide, including territories previously considered as scrapie free... Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.
WEDNESDAY, MAY 29, 2019
Incomplete inactivation of atypical scrapie following recommended autoclave decontamination procedures USDA HERE'S YOUR SIGN!
-------- Original Message --------
Subject: re-BSE prions propagate as either variant CJD-like or sporadic CJD
Date: Thu, 28 Nov 2002 10:23:43 -0000 From: "Asante, Emmanuel A" To: "'flounder@wt.net'"
Dear Terry,
I have been asked by Professor Collinge to respond to your request. I am a Senior Scientist in the MRC Prion Unit and the lead author on the paper. I have attached a pdf copy of the paper for your attention. Thank you for your interest in the paper.
In respect of your first question, the simple answer is, yes. As you will find in the paper, we have managed to associate the alternate phenotype to type 2 PrPSc, the commonest sporadic CJD. It is too early to be able to claim any further sub-classification in respect of Heidenhain variant CJD or Vicky Rimmer's version. It will take further studies, which are on-going, to establish if there are sub-types to our initial finding which we are now reporting. The main point of the paper is that, as well as leading to the expected new variant CJD phenotype, BSE transmission to the 129-methionine genotype can lead to an alternate phenotype which is indistinguishable from type 2 PrPSc.
I hope reading the paper will enlighten you more on the subject. If I can be of any further assistance please to not hesitate to ask. Best wishes.
Emmanuel Asante
<>
____________________________________
Dr. Emmanuel A Asante MRC Prion Unit & Neurogenetics Dept. Imperial College School of Medicine (St. Mary's) Norfolk Place, LONDON W2 1PG Tel: +44 (0)20 7594 3794 Fax: +44 (0)20 7706 3272 email: e.asante@ic.ac.uk (until 9/12/02) New e-mail: e.asante@prion.ucl.ac.uk (active from now)
____________________________________
snip...see full text ;
SATURDAY, JUNE 23, 2018
CDC
***> Diagnosis of Methionine/Valine Variant Creutzfeldt-Jakob Disease by Protein Misfolding Cyclic Amplification
Volume 24, Number 7—July 2018 Dispatch
EMBO J. 2002 Dec 2; 21(23): 6358–6366. doi: 10.1093/emboj/cdf653 PMCID: PMC136957 PMID: 12456643
BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein
Emmanuel A. Asante, Jacqueline M. Linehan, Melanie Desbruslais, Susan Joiner, Ian Gowland, Andrew L. Wood, Julie Welch, Andrew F. Hill, Sarah E. Lloyd, Jonathan D.F. Wadsworth, and John Collinge1
Author information Article notes Copyright and License information Disclaimer
Abstract
Variant Creutzfeldt–Jakob disease (vCJD) has been recognized to date only in individuals homozygous for methionine at PRNP codon 129. Here we show that transgenic mice expressing human PrP methionine 129, inoculated with either bovine spongiform encephalopathy (BSE) or variant CJD prions, may develop the neuropathological and molecular phenotype of vCJD, consistent with these diseases being caused by the same prion strain. Surprisingly, however, BSE transmission to these transgenic mice, in addition to producing a vCJD-like phenotype, can also result in a distinct molecular phenotype that is indistinguishable from that of sporadic CJD with PrPSc type 2. These data suggest that more than one BSE-derived prion strain might infect humans; it is therefore possible that some patients with a phenotype consistent with sporadic CJD may have a disease arising from BSE exposure.
snip...
Humans infected with BSE prions, but who became asymptomatic carriers, may nevertheless pose a threat of iatrogenic transmission via medical and surgical procedures. Alternatively, it is possible that the lifespan of the laboratory mouse is insufficient to allow expression of clinical disease in most inoculated mice, whereas a higher proportion of infected humans might survive the incubation period to develop clinical signs of disease. Serial passage studies and titration of prions in these mice are in progress to study this further.
These studies further strengthen the evidence that vCJD is caused by a BSE-like prion strain. Also, remarkably, the key neuropathological hallmark of vCJD, the presence of abundant florid PrP plaques, can be recapitulated on BSE or vCJD transmission to these mice. However, the most surprising aspect of the studies was the finding that an alternate pattern of disease can be induced in 129MM Tg35 mice from primary transmission of BSE, with a molecular phenotype indistinguishable from that of a sub-type of sporadic CJD. This finding has important potential implications as it raises the possibility that some humans infected with BSE prions may develop a clinical disease indistinguishable from classical CJD associated with type 2 PrPSc. This is, in our experience, the commonest molecular sub-type of sporadic CJD.
snip...see full text;
THURSDAY, DECEMBER 12, 2019
Heidenhain Variant Creutzfeldt Jakob Disease hvCJD, sporadic spontaneous CJD and the TSE Prion December 14, 2019
22 years, rip mom dod 12/14/97 confirmed hvcjd, just made a promise to mom, and you don't break those promises, never forget, and never let them forget, before we all do...this pearl's for you! love terry
WEDNESDAY, DECEMBER 04, 2019
Three Cases of Creutzfeldt-Jakob Disease with Visual Disturbances as Initial Manifestation
WEDNESDAY, NOVEMBER 13, 2019
Moncton Hospital A third person who had cataract surgery has been diagnosed with the fatal Creuztfeld-Jakob disease
SATURDAY, SEPTEMBER 21, 2019
Saturday, November 23, 2019
National Variability in Prion Disease–Related Safety Policies for Neurologic Procedures
Prion disease incidence in the United States, 2003–2015
FRIDAY, OCTOBER 25, 2019
27th ANNUAL REPORT 2018 CREUTZFELDT-JAKOB DISEASE SURVEILLANCE
SUNDAY, AUGUST 09, 2009
CJD...Straight talk with...James Ironside...and...Terry Singeltary... 2009
TUESDAY, AUGUST 18, 2009
BSE-The Untold Story - joe gibbs and singeltary 1999 - 2009
SUNDAY, MARCH 10, 2019
National Prion Disease Pathology Surveillance Center Cases Examined¹ Updated Feb 1, 2019 Variably protease-sensitive prionopathy VPSPr
MONDAY, AUGUST 26, 2019
Creutzfeldt Jakob Disease CJD, TSE, Prion, Surveillance Update August 2019
SATURDAY, AUGUST 24, 2019
Creutzfeldt-Jakob disease surveillance in Australia: update to 31 December 2018
1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8
***> Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery.
Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC.
Laboratory of Central Nervous System Studies, National Institute of
Neurological Disorders and Stroke, National Institutes of Health,
Bethesda, MD 20892.
Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them.
PMID: 8006664 [PubMed - indexed for MEDLINE]
Subject: The emergence of classical BSE from atypical/Nor98 scrapie
The emergence of classical BSE from atypical/Nor98 scrapie
Alvina Huor, View ORCID ProfileJuan Carlos Espinosa, View ORCID ProfileEnric Vidal, Hervé Cassard, View ORCID ProfileJean-Yves Douet, Séverine Lugan, Naima Aron, View ORCID ProfileAlba Marín-Moreno, Patricia Lorenzo, Patricia Aguilar-Calvo, Juan Badiola, Rosa Bolea, Martí Pumarola, Sylvie L. Benestad, Leonore Orge, Alana M. Thackray, Raymond Bujdoso, View ORCID ProfileJuan-Maria Torres, and View ORCID ProfileOlivier Andreoletti
PNAS first published December 16, 2019 https://doi.org/10.1073/pnas.1915737116
Edited by Michael B. A. Oldstone, Scripps Research Institute, La Jolla, CA, and approved November 15, 2019 (received for review September 11, 2019)
Significance
The origin of transmissible BSE in cattle remains unestablished. Sheep scrapie is a potential source of this known zoonotic. Here we investigated the capacity of sheep scrapie to propagate in bovine PrP transgenic mice. Unexpectedly, transmission of atypical but not classical scrapie in bovine PrP mice resulted in propagation of classical BSE prions. Detection of prion seeding activity by in vitro protein misfolding cyclic amplification demonstrated BSE prions in the original atypical scrapie isolates. BSE prion seeding activity was also detected in ovine PrP mice inoculated with limiting dilutions of atypical scrapie. Our data demonstrate that classical BSE prions can emerge during intra- and interspecies passage of atypical scrapie and provide an unprecedented insight into the evolution of mammalian prions.
Abstract
Atypical/Nor98 scrapie (AS) is a prion disease of small ruminants. Currently there are no efficient measures to control this form of prion disease, and, importantly, the zoonotic potential and the risk that AS might represent for other farmed animal species remains largely unknown. In this study, we investigated the capacity of AS to propagate in bovine PrP transgenic mice. Unexpectedly, the transmission of AS isolates originating from 5 different European countries to bovine PrP mice resulted in the propagation of the classical BSE (c-BSE) agent. Detection of prion seeding activity in vitro by protein misfolding cyclic amplification (PMCA) demonstrated that low levels of the c-BSE agent were present in the original AS isolates. C-BSE prion seeding activity was also detected in brain tissue of ovine PrP mice inoculated with limiting dilutions (endpoint titration) of ovine AS isolates. These results are consistent with the emergence and replication of c-BSE prions during the in vivo propagation of AS isolates in the natural host. These data also indicate that c-BSE prions, a known zonotic agent in humans, can emerge as a dominant prion strain during passage of AS between different species. These findings provide an unprecedented insight into the evolution of mammalian prion strain properties triggered by intra- and interspecies passage. From a public health perspective, the presence of c-BSE in AS isolates suggest that cattle exposure to small ruminant tissues and products could lead to new occurrences of c-BSE.
prionatypical scrapiec-BSE
Footnotes
↵1A.H., J.C.E., and E.V. contributed equally to the work.
↵2To whom correspondence may be addressed. Email: o.andreoletti@envt.fr.
Author contributions: E.V. and O.A. designed research; A.H., J.C.E., E.V., H.C., J.-Y.D., S.L., N.A., A.M.-M., P.L., P.A.-C., J.B., R. Bolea, M.P., and O.A. performed research; S.L.B. and L.O. contributed new reagents/analytic tools; A.H., J.C.E., E.V., S.L.B., L.O., A.M.T., R. Bujdoso, J.M.T., and O.A. analyzed data; and A.H., S.L.B., L.O., A.M.T., R. Bujdoso, and O.A. wrote the paper.
The authors declare no competing interest.
This article is a PNAS Direct Submission.
This article contains supporting information online at
The researchers say that, unexpectedly, the injection of the scrapie strain into the genetically modified mice resulted in the propagation of classical mad cow disease prions. These prions are present in natural form in the scrapie variant.
This observation indicates that the illness could be transmitted between different species and that the modified mice could develop mad cow disease, according to the study.
Olivier Andreoletti, an author of the paper from the French National Institute for Agronomic Research (INRA,) told AFP that the modified mice are "a very good model, which works well in terms of knowing what would happen if one exposed cows to those prions."
He noted that the results provide, for the first time, and "experimentally underpinned explanation" for the appearance of mad cow disease in the U.K. in the 1980s.
After emerging, the disease spread in cattle across Europe, North America and other regions of the globe. This process was exacerbated by the fact that cows were being given feed which contained tissue from other cows infected with the disease.
Following this spread some people became infected with Creutzfeldt-Jakob disease after eating beef products contaminated with mad cow disease.
European health authorities introduced a host of precautionary measures to prevent the disease from spreading in the 1990s, and Andreoletti says these must be maintained in order to stop it re-emerging.
***> Thus, atypical scrapie is recognized as a separate, nonreportable disease by the World Organization for Animal Health (OIE).
''as usual, OIE USDA et al put cart before horse, and put human and animal life at risk...terry''
Atypical scrapie has been transmitted experimentally to AHQ sheep by the intracranial145 and oral146 routes. An increased risk of atypical scrapie has also been identified in sheep with the AF141RQ haplotype.137 Atypical scrapie does experimentally transmit to sheep with the AL141RQ haplotype but with very long incubation periods without clinical signs.123 Furthermore, sheep with the ARR haplotype, which confers resistance to classical scrapie and is the cornerstone of genotype-based eradication programs, do not appear to be protected against developing atypical scrapie.41,137
Atypical scrapie has also been reported in goats,103,142 where the molecular profile on western blot is similar to atypical scrapie in sheep, but the distribution of lesions within the brain is more rostral (thalamus and midbrain) than atypical scrapie of sheep.142 Similar to sheep with atypical scrapie, histidine substitution at PRNP codon 154 is a risk factor for atypical scrapie in goats,32 and PrPSc has not been demonstrated in the lymphoid tissues of affected goats.142
end...see;
A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes
Annick Le Dur*,?, Vincent Béringue*,?, Olivier Andréoletti?, Fabienne Reine*, Thanh Lan Laï*, Thierry Baron§, Bjørn Bratberg¶, Jean-Luc Vilotte?, Pierre Sarradin**, Sylvie L. Benestad¶, and Hubert Laude*,?? +Author Affiliations
*Virologie Immunologie Moléculaires and ?Génétique Biochimique et Cytogénétique, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; ?Unité Mixte de Recherche, Institut National de la Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, Interactions Hôte Agent Pathogène, 31066 Toulouse, France; §Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, 69364 Lyon, France; **Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France; and ¶Department of Pathology, National Veterinary Institute, 0033 Oslo, Norway
***Edited by Stanley B. Prusiner, University of California, San Francisco, CA (received for review March 21, 2005)
Abstract
Scrapie in small ruminants belongs to transmissible spongiform encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative disorders that affect humans and animals and can transmit within and between species by ingestion or inoculation. Conversion of the host-encoded prion protein (PrP), normal cellular PrP (PrPc), into a misfolded form, abnormal PrP (PrPSc), plays a key role in TSE transmission and pathogenesis. The intensified surveillance of scrapie in the European Union, together with the improvement of PrPSc detection techniques, has led to the discovery of a growing number of so-called atypical scrapie cases. These include clinical Nor98 cases first identified in Norwegian sheep on the basis of unusual pathological and PrPSc molecular features and "cases" that produced discordant responses in the rapid tests currently applied to the large-scale random screening of slaughtered or fallen animals. Worryingly, a substantial proportion of such cases involved sheep with PrP genotypes known until now to confer natural resistance to conventional scrapie. Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice.
*** These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health.
OR
***The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.
OR
*** Intriguingly, these conclusions suggest that some pathological features of Nor98 are reminiscent of Gerstmann-Sträussler-Scheinker disease.
OR here;
*** The discovery of previously unrecognized prion diseases in both humans and animals (i.e., Nor98 in small ruminants) demonstrates that the range of prion diseases might be wider than expected and raises crucial questions about the epidemiology and strain properties of these new forms. We are investigating this latter issue by molecular and biological comparison of VPSPr, GSS and Nor98.
VARIABLY PROTEASE-SENSITVE PRIONOPATHY IS TRANSMISSIBLE ...price of prion poker goes up again $
OR-10: Variably protease-sensitive prionopathy is transmissible in bank voles
Romolo Nonno,1 Michele Di Bari,1 Laura Pirisinu,1 Claudia D’Agostino,1 Stefano Marcon,1 Geraldina Riccardi,1 Gabriele Vaccari,1 Piero Parchi,2 Wenquan Zou,3 Pierluigi Gambetti,3 Umberto Agrimi1 1Istituto Superiore di Sanità; Rome, Italy; 2Dipartimento di Scienze Neurologiche, Università di Bologna; Bologna, Italy; 3Case Western Reserve University; Cleveland, OH USA
Background. Variably protease-sensitive prionopathy (VPSPr) is a recently described “sporadic”neurodegenerative disease involving prion protein aggregation, which has clinical similarities with non-Alzheimer dementias, such as fronto-temporal dementia. Currently, 30 cases of VPSPr have been reported in Europe and USA, of which 19 cases were homozygous for valine at codon 129 of the prion protein (VV), 8 were MV and 3 were MM. A distinctive feature of VPSPr is the electrophoretic pattern of PrPSc after digestion with proteinase K (PK). After PK-treatment, PrP from VPSPr forms a ladder-like electrophoretic pattern similar to that described in GSS cases. The clinical and pathological features of VPSPr raised the question of the correct classification of VPSPr among prion diseases or other forms of neurodegenerative disorders. Here we report preliminary data on the transmissibility and pathological features of VPSPr cases in bank voles.
Materials and Methods. Seven VPSPr cases were inoculated in two genetic lines of bank voles, carrying either methionine or isoleucine at codon 109 of the prion protein (named BvM109 and BvI109, respectively). Among the VPSPr cases selected, 2 were VV at PrP codon 129, 3 were MV and 2 were MM. Clinical diagnosis in voles was confirmed by brain pathological assessment and western blot for PK-resistant PrPSc (PrPres) with mAbs SAF32, SAF84, 12B2 and 9A2.
Results. To date, 2 VPSPr cases (1 MV and 1 MM) gave positive transmission in BvM109. Overall, 3 voles were positive with survival time between 290 and 588 d post inoculation (d.p.i.). All positive voles accumulated PrPres in the form of the typical PrP27–30, which was indistinguishable to that previously observed in BvM109 inoculated with sCJDMM1 cases.
In BvI109, 3 VPSPr cases (2 VV and 1 MM) showed positive transmission until now. Overall, 5 voles were positive with survival time between 281 and 596 d.p.i.. In contrast to what observed in BvM109, all BvI109 showed a GSS-like PrPSc electrophoretic pattern, characterized by low molecular weight PrPres. These PrPres fragments were positive with mAb 9A2 and 12B2, while being negative with SAF32 and SAF84, suggesting that they are cleaved at both the C-terminus and the N-terminus. Second passages are in progress from these first successful transmissions.
Conclusions. Preliminary results from transmission studies in bank voles strongly support the notion that VPSPr is a transmissible prion disease. Interestingly, VPSPr undergoes divergent evolution in the two genetic lines of voles, with sCJD-like features in BvM109 and GSS-like properties in BvI109.
The discovery of previously unrecognized prion diseases in both humans and animals (i.e., Nor98 in small ruminants) demonstrates that the range of prion diseases might be wider than expected and raises crucial questions about the epidemiology and strain properties of these new forms. We are investigating this latter issue by molecular and biological comparison of VPSPr, GSS and Nor98.
***> P.108: Successful oral challenge of adult cattle with classical BSE
Sandor Dudas1,*, Kristina Santiago-Mateo1, Tammy Pickles1, Catherine Graham2, and Stefanie Czub1 1Canadian Food Inspection Agency; NCAD Lethbridge; Lethbridge, Alberta, Canada; 2Nova Scotia Department of Agriculture; Pathology Laboratory; Truro, Nova Scotia, Canada
Classical Bovine spongiform encephalopathy (C-type BSE) is a feed- and food-borne fatal neurological disease which can be orally transmitted to cattle and humans. Due to the presence of contaminated milk replacer, it is generally assumed that cattle become infected early in life as calves and then succumb to disease as adults. Here we challenged three 14 months old cattle per-orally with 100 grams of C-type BSE brain to investigate age-related susceptibility or resistance. During incubation, the animals were sampled monthly for blood and feces and subjected to standardized testing to identify changes related to neurological disease. At 53 months post exposure, progressive signs of central nervous system disease were observed in these 3 animals, and they were euthanized. Two of the C-BSE animals tested strongly positive using standard BSE rapid tests, however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE. Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.
***Our study demonstrates susceptibility of adult cattle to oral transmission of classical BSE.
We are further examining explanations for the unusual disease presentation in the third challenged animal.
P98 The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge Greenlee JJ (1), Moore SJ (1), and West Greenlee MH (2) (1) United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States (2) Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.
In 2006, a case of H-type bovine spongiform encephalopathy (BSE) was reported in a cow with a previously unreported prion protein polymorphism (E211K).
The E211K polymorphism is heritable and homologous to the E200K mutation in humans that is the most frequent PRNP mutation associated with familial Creutzfeldt-Jakob disease.
Although the prevalence of the E211K polymorphism is low, cattle carrying the K211 allele develop H-type BSE with a rapid onset after experimental inoculation by the intracranial route.
The purpose of this study was to investigate whether the agents of H-type BSE or H-type BSE associated with the E211K polymorphism transmit to wild type cattle or cattle with the K211 allele after oronasal exposure.
Wild type (EE211) or heterozygous (EK211) cattle were oronasally inoculated with either H-type BSE from the 2004 US Htype BSE case (n=3) or from the 2006 US H-type case associated with the E211K polymorphism (n=4) using 10% w/v brain homogenates.
Cattle were observed daily throughout the course of the experiment for the development of clinical signs.
At approximately 50 months post-inoculation, one steer (EK211 inoculated with E211K associated H-BSE) developed clinical signs including inattentiveness, loss of body condition, weakness, ataxia, and muscle fasciculations and was euthanized.
Enzyme immunoassay confirmed that abundant misfolded protein was present in the brainstem, and immunohistochemistry demonstrated PrPSc throughout the brain.
Western blot analysis of brain tissue from the clinically affected steer was consistent with the E211K H-type BSE inoculum.
With the experiment currently at 55 months post-inoculation, no other cattle in this study have developed clinical signs suggestive of prion disease. This study demonstrates that the H-type BSE agent is transmissible by the oronasal route.
These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.
WEDNESDAY, AUGUST 15, 2018
***> The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge
MONDAY, JANUARY 09, 2017
Oral Transmission of L-Type Bovine Spongiform Encephalopathy Agent among Cattle
CDC Volume 23, Number 2—February 2017
*** Consumption of L-BSE–contaminated feed may pose a risk for oral transmission of the disease agent to cattle.
*** Consumption of L-BSE–contaminated feed may pose a risk for oral transmission of the disease agent to cattle.
Detection of PrPBSE and prion infectivity in the ileal Peyer’s patch of young calves as early as 2 months after oral challenge with classical bovine spongiform encephalopathy
Ivett Ackermann1 , Anne Balkema‑Buschmann1 , Reiner Ulrich2 , Kerstin Tauscher2 , James C. Shawulu1 , Markus Keller1 , Olanrewaju I. Fatola1 , Paul Brown3 and Martin H. Groschup1*
Abstract
In classical bovine spongiform encephalopathy (C-BSE), an orally acquired prion disease of cattle, the ileal Peyer’s patch (IPP) represents the main entry port for the BSE agent. In earlier C-BSE pathogenesis studies, cattle at 4–6 months of age were orally challenged, while there are strong indications that the risk of infection is highest in young animals. In the present study, unweaned calves aged 4–6 weeks were orally challenged to determine the earli‑ est time point at which newly formed PrPBSE and BSE infectivity are detectable in the IPP. For this purpose, calves were culled 1 week as well as 2, 4, 6 and 8 months post-infection (mpi) and IPPs were examined for BSE infectivity using a bovine PrP transgenic mouse bioassay, and for PrPBSE by immunohistochemistry (IHC) and protein misfolding cyclic amplifcation (PMCA) assays. For the frst time, BSE prions were detected in the IPP as early as 2 mpi by transgenic mouse bioassay and PMCA and 4 mpi by IHC in the follicular dendritic cells (FDCs) of the IPP follicles. These data indi‑ cate that BSE prions propagate in the IPP of unweaned calves within 2 months of oral uptake of the agent.
In summary, our study demonstrates for the frst time PrPBSE (by PMCA) and prion infectivity (by mouse bioassay) in the ileal Peyer’s patch (IPP) of young calves as early as 2 months after infection. From 4 mpi nearly all calves showed PrPBSE positive IPP follicles (by IHC), even with PrPBSE accumulation detectable in FDCs in some animals. Finally, our results confrm the IPP as the early port of entry for the BSE agent and a site of initial propagation of PrPBSE and infectivity during the early pathogenesis of the disease. Terefore, our study supports the recommendation to remove the last four metres of the small intestine (distal ileum) at slaughter, as designated by current legal requirements for countries with a controlled BSE risk status, as an essential measure for consumer and public health protection.
PLOS ONE Journal
IBNC Tauopathy or TSE Prion disease, it appears, no one is sure
Terry S. Singeltary Sr., 03 Jul 2015 at 16:53 GMT
***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE.
***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.
*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***
http://www.plosone.org/annotation/listThread.action?root=86610
***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.
*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***
http://www.plosone.org/annotation/listThread.action?root=86610
*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;
P98 The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge
Greenlee JJ (1), Moore SJ (1), and West Greenlee MH (2) (1) United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States (2) Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States.
reading up on this study from Prion 2018 Conference, very important findings ;
***> This study demonstrates that the H-type BSE agent is transmissible by the oronasal route.
***> These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.
PRION 2018 CONFERENCE ABSTRACT
WEDNESDAY, OCTOBER 24, 2018
Experimental Infection of Cattle With a Novel Prion Derived From Atypical H-Type Bovine Spongiform Encephalopathy
Friday, December 14, 2012
DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012
snip.....
In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.
Animals considered at high risk for CWD include:
1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and
2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.
Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.
The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.
Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.
There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.
snip.....
36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011).
The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE).
Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.
snip.....
The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).
snip.....
In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.
snip.....
In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.
snip.....
Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.
snip.....
TUESDAY, OCTOBER 29, 2019
America BSE 589.2001 FEED REGULATIONS, BSE SURVEILLANCE, BSE TESTING, and CJD TSE Prion
the feds just released this statement and you should read this very carefully about the mad cow feed ban that never was, and still isn't, and why this is so important, since USDA APHIS ARS Scientist recent transmitted Chronic Wasting Disease CWD TSE Prion, BY ORAL ROUTES, to PIGS AND SHEEP. this is terrible news, and proves the mad cow feed ban never worked, especially since it really never existed;
ponder this; ***> Adriano Aguzzi...''We even showed that a prion AEROSOL will infect 100% of mice within 10 seconds of exposure''
SUNDAY, SEPTEMBER 1, 2019
FDA Reports on VFD Compliance
Before and after the current Veterinary Feed Directive (VFD) rules took full effect in January, 2017, the FDA focused primarily on education and outreach to help feed mills, veterinarians and producers understand and comply with the requirements. Since then, FDA has gradually increased the number of VFD inspections and initiated enforcement actions when necessary.
***> cattle, pigs, sheep, cwd, tse, prion, oh my!
***> In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006).
Sheep and cattle may be exposed to CWD via common grazing areas with affected deer but so far, appear to be poorly susceptible to mule deer CWD (Sigurdson, 2008). In contrast, cattle are highly susceptible to white-tailed deer CWD and mule deer CWD in experimental conditions but no natural CWD infections in cattle have been reported (Sigurdson, 2008; Hamir et al., 2006). It is not known how susceptible humans are to CWD but given that the prion can be present in muscle, it is likely that humans have been exposed to the agent via consumption of venison (Sigurdson, 2008). Initial experimental research suggests that human susceptibility to CWD is low and there may be a robust species barrier for CWD transmission to humans (Sigurdson, 2008), however the risk appetite for a public health threat may still find this level unacceptable.
cwd scrapie pigs oral routes
***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <***
>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <***
***> Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 5="" 6="" at="" by="" detected="" eia.="" examined="" group="" in="" intracranial="" least="" lymphoid="" month="" months="" of="" one="" pigs="" positive="" prpsc="" quic="" the="" tissues="" was="">6 months group, 5/6 pigs in the oral <6 4="" and="" group="" months="" oral="">6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). 6>6>
***> Conclusions: This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge. CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period.
This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease.
Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.
TUESDAY, APRIL 18, 2017
*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP ***
FRIDAY, APRIL 22, 2016
Texas Scrapie Confirmed in a Hartley County Sheep where CWD was detected in a Mule Deer April 22, 2016
THURSDAY, JUNE 09, 2016
Scrapie Field Trial Experiments Mission, Texas, The Moore Air Force Base Scrapie TSE Prion Experiment 1964
Scrapie Field Trial Experiments Mission, Texas, The Moore Air Force Base Scrapie Experiment 1964
How Did CWD Get Way Down In Medina County, Texas?
Confucius ponders...
Could the Scrapie experiments back around 1964 at Moore Air Force near Mission, Texas, could this area have been ground zero for CWD TSE Prion (besides the CWD cases that have waltzed across the Texas, New Mexico border near WSMR Trans Pecos region since around 2001)?
Epidemiology of Scrapie in the United States 1977
snip...
Scrapie Field Trial Experiments Mission, Texas
A Scrapie Field Trial was developed at Mission, Texas, to provide additional information for the eradication program on the epidemiology of natural scrapie. The Mission Field Trial Station is located on 450 acres of pastureland, part of the former Moore Air Force Base, near Mission, Texas. It was designed to bring previously exposed, and later also unexposed, sheep or goats to the Station and maintain and breed them under close observation for extended periods to determine which animals would develop scrapie and define more closely the natural spread and other epidemiological aspects of the disease.
The 547 previously exposed sheep brought to the Mission Station beginning in 1964 were of the Cheviot, Hampshire, Montadale, or Suffolk breeds. They were purchased as field outbreaks occurred, and represented 21 bloodlines in which scrapie had been diagnosed. Upon arrival at the Station, the sheep were maintained on pasture, with supplemental feeding as necessary. The station was divided into 2 areas: (1) a series of pastures and-pens occupied by male animals only, and (2) a series of pastures and pens occupied by females and young progeny of both sexes. ...
snip...see full text ;
Mission, Texas Scrapie transmission to cattle study
Wilbur Clarke (reference the Mission, Texas scrapie transmission transmission to cattle study) is now the State Veterinarian for Montana based at Helena.
I was given confidential access to sections from the Clarke scrapie-cattle transmission experiment. Details of the experimental design were as supplied previously by Dr. Wrathall (copy of relevant information appended). Only 3 animals (2 inoculated with 2nd pass Suffolk scrapie and 1 inoculated with Angora goat passaged scrapie) showed clinical signs. Clinical signs were characterised by weakness, ''a stilted hindlimb gait'', disorientation, ataxia and, terminally, lateral recumbency. The two cattle from which I examined material were inocluated at 8 months of age and developed signs 36 months pi (goat scrapie inoculum) and 49 months pi (one of the Suffolk scrapie inoculated) respectively. This latter animal was killed at 58 months of age and so the clinical duration was only 1 month. The neuropathology was somewhat different from BSE or the Stetsonville TME in cattle. Vacuolar changes were minimal, to the extent that detection REQUIRED CAREFUL SEARCHING. Conversely astrocyte hypertrophy was a widespread and prominent feature. The material requires DETAILED NEUROPATHOLOGICAL ASSESSMENT BUT WHETHER OR NOT THIS WILL BE DONE REMAINS A QUESTION.
Transmission Studies
Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}...TSS
resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.
snip...
Appendix 3
VISIT TO USA - DR A E WRATHALL - INFO ON BSE AND SCRAPIE
1. Dr Clark lately of the Scrapie Research Unit, Mission Texas has successfully transmitted ovine and caprine scrapie to cattle. The experimental results have not been published but there are plans to do this. This work was initiated in 1978.
A summary of it is:-
Expt A
6 Her x Jer calves born in 1978 were inoculated as follows with
a 2nd Suffolk scrapie passage:-
i/c 1ml; i/m, 5ml; s/c 5ml; oral 30ml.
1/6 went down after 48 months with a scrapie/BSE-like disease.
Expt B
6 Her or Jer or HxJ calves were inoculated with angora Goat
virus 2/6 went down similarly after 36 months.
Expt C
Mice inoculated from brains of calves/cattle in expts A • B were resistant, only 1/20 going down with scrapie and this was the reason given for not publishing.
Diagnosis in A, B, C was by histopath. No reports on SAT were given.
2. Dr Warren Foote indicated success so far in eliminating scrapie in offspring from experimentally- (and naturally) infected sheep by ET. He had found difficulty in obtaining embryos from naturally infected sheep (cf SPA).
3. Prof. A Robertson gave a brief account of BSE.
The US approach was to accord it a very low profile indeed.
Dr A Thiermann showed the picture in the "Independent" with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs. BSE was not reported in USA.
4. Scrapie incidents (ie affected flocks) have shown a dramatic increase since 1978.
In 1953 when the National Control Scheme was started there were 10-14 incidents, in 1978 - 1 and in 1988 so far 60.
5. Scrapie agent was reported to have been isolated from a solitary fetus.
6. A western blotting diagnostic technique (? on PrP) shows some promise.
7. Results of a questionnaire sent to 33 states on the subject of the national sheep scrapie programme survey indicated
17/33 wished to drop it
6/33 wished to develop it
9/13/2005 33 Page 15 of 17
8/33 had few sheep and were neutral Information obtained from Dr Wrathall's notes of a meeting of the U.S. Animal Health Association at Little Rock, Arkansas Nov. 1988. end...TSS
Spongiform Encephalopathy in Captive Wild ZOO BSE INQUIRY
Mission, Texas Scrapie transmission to cattle study
Thursday, December 23, 2010
Molecular Typing of Protease-Resistant Prion Protein in Transmissible Spongiform Encephalopathies of Small Ruminants, France, 2002-2009
Volume 17, Number 1 January 2011
Thursday, November 18, 2010
Increased susceptibility of human-PrP transgenic mice to bovine spongiform encephalopathy following passage in sheep
Monday, April 25, 2011
Experimental Oral Transmission of Atypical Scrapie to Sheep
Volume 17, Number 5-May 2011
Friday, February 11, 2011
Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues
Thursday, March 29, 2012
atypical Nor-98 Scrapie has spread from coast to coast in the USA 2012
NIAA Annual Conference April 11-14, 2011San Antonio, Texas
Sporadic CJD type 1 and atypical/ Nor98 scrapie are characterized by fine (reticular) deposits, see also ; All of the Heidenhain variants were of the methionine/ methionine type 1 molecular subtype.
*** The discovery of previously unrecognized prion diseases in both humans and animals (i.e., Nor98 in small ruminants) demonstrates that the range of prion diseases might be wider than expected and raises crucial questions about the epidemiology and strain properties of these new forms. We are investigating this latter issue by molecular and biological comparison of VPSPr, GSS and Nor98.
VARIABLY PROTEASE-SENSITVE PRIONOPATHY IS TRANSMISSIBLE ...price of prion poker goes up again $
OR-10: Variably protease-sensitive prionopathy is transmissible in bank voles
Romolo Nonno,1 Michele Di Bari,1 Laura Pirisinu,1 Claudia D’Agostino,1 Stefano Marcon,1 Geraldina Riccardi,1 Gabriele Vaccari,1 Piero Parchi,2 Wenquan Zou,3 Pierluigi Gambetti,3 Umberto Agrimi1 1Istituto Superiore di Sanità; Rome, Italy; 2Dipartimento di Scienze Neurologiche, Università di Bologna; Bologna, Italy; 3Case Western Reserve University; Cleveland, OH USA
Background. Variably protease-sensitive prionopathy (VPSPr) is a recently described “sporadic”neurodegenerative disease involving prion protein aggregation, which has clinical similarities with non-Alzheimer dementias, such as fronto-temporal dementia. Currently, 30 cases of VPSPr have been reported in Europe and USA, of which 19 cases were homozygous for valine at codon 129 of the prion protein (VV), 8 were MV and 3 were MM. A distinctive feature of VPSPr is the electrophoretic pattern of PrPSc after digestion with proteinase K (PK). After PK-treatment, PrP from VPSPr forms a ladder-like electrophoretic pattern similar to that described in GSS cases. The clinical and pathological features of VPSPr raised the question of the correct classification of VPSPr among prion diseases or other forms of neurodegenerative disorders. Here we report preliminary data on the transmissibility and pathological features of VPSPr cases in bank voles.
Materials and Methods. Seven VPSPr cases were inoculated in two genetic lines of bank voles, carrying either methionine or isoleucine at codon 109 of the prion protein (named BvM109 and BvI109, respectively). Among the VPSPr cases selected, 2 were VV at PrP codon 129, 3 were MV and 2 were MM. Clinical diagnosis in voles was confirmed by brain pathological assessment and western blot for PK-resistant PrPSc (PrPres) with mAbs SAF32, SAF84, 12B2 and 9A2.
Results. To date, 2 VPSPr cases (1 MV and 1 MM) gave positive transmission in BvM109. Overall, 3 voles were positive with survival time between 290 and 588 d post inoculation (d.p.i.). All positive voles accumulated PrPres in the form of the typical PrP27–30, which was indistinguishable to that previously observed in BvM109 inoculated with sCJDMM1 cases.
In BvI109, 3 VPSPr cases (2 VV and 1 MM) showed positive transmission until now. Overall, 5 voles were positive with survival time between 281 and 596 d.p.i.. In contrast to what observed in BvM109, all BvI109 showed a GSS-like PrPSc electrophoretic pattern, characterized by low molecular weight PrPres. These PrPres fragments were positive with mAb 9A2 and 12B2, while being negative with SAF32 and SAF84, suggesting that they are cleaved at both the C-terminus and the N-terminus. Second passages are in progress from these first successful transmissions.
Conclusions. Preliminary results from transmission studies in bank voles strongly support the notion that VPSPr is a transmissible prion disease. Interestingly, VPSPr undergoes divergent evolution in the two genetic lines of voles, with sCJD-like features in BvM109 and GSS-like properties in BvI109.
The discovery of previously unrecognized prion diseases in both humans and animals (i.e., Nor98 in small ruminants) demonstrates that the range of prion diseases might be wider than expected and raises crucial questions about the epidemiology and strain properties of these new forms. We are investigating this latter issue by molecular and biological comparison of VPSPr, GSS and Nor98.
Monday, June 27, 2011
Comparison of Sheep Nor98 with Human Variably Protease-Sensitive Prionopathy and Gerstmann-Sträussler-Scheinker Disease
CREUTZFELDT JAKOB DISEASE SURVEILLANCE IN THE UNITED KINGDOM THIRD ANNUAL REPORT AUGUST 1994
Consumption of venison and veal was much less widespread among both cases and controls. For both of these meats there was evidence of a trend with increasing frequency of consumption being associated with increasing risk of CJD. (not nvCJD, but sporadic CJD...tss) These associations were largely unchanged when attention was restricted to pairs with data obtained from relatives. ...
Table 9 presents the results of an analysis of these data.
There is STRONG evidence of an association between ‘’regular’’ veal eating and risk of CJD (p = .0.01).
Individuals reported to eat veal on average at least once a year appear to be at 13 TIMES THE RISK of individuals who have never eaten veal.
There is, however, a very wide confidence interval around this estimate. There is no strong evidence that eating veal less than once per year is associated with increased risk of CJD (p = 0.51).
The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).
The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).
snip...
It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).
snip...
In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...
snip...
In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A.. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)
snip...see full report ;
Thursday, October 10, 2013
CJD REPORT 1994 increased risk for consumption of veal and venison and lamb
Monday, November 30, 2009
***> USDA AND OIE COLLABORATE TO EXCLUDE ATYPICAL SCRAPIE NOR-98 ANIMAL HEALTH CODE
Thursday, December 20, 2012
***> OIE GROUP RECOMMENDS THAT SCRAPE PRION DISEASE BE DELISTED, WISHES TO CONTINUE SPREADING IT AROUND THE GLOBE
THURSDAY, APRIL 26, 2018
Scrapie USA update 471 classical and 12 Nor98-like cases confirmed to date
http://scrapie-usa.blogspot.com/2018/04/scrapie-usa-update-471-classical-and-12.html
Scrapie USA update 471 classical and 12 Nor98-like cases confirmed to date
http://scrapie-usa.blogspot.com/2018/04/scrapie-usa-update-471-classical-and-12.html
P.97: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease and distinct from the scrapie inoculum
Justin Greenlee1, S JO Moore1, Jodi Smith1, M Heather WestGreenlee2 and Robert Kunkle1
1National Animal Disease Center; Ames, IA USA
2Iowa State University; Ames, IA USA
The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n = 5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the 2 inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy.
***In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, 2 distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.
*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation
snip...
It is unlikely that CWD will be eradicated from free-ranging cervids, and the disease is likely to continue to spread geographically [10]. However, the potential that white-tailed deer may be susceptible to sheep scrapie by a natural route presents an additional confounding factor to halting the spread of CWD. This leads to the additional speculations that
1) infected deer could serve as a reservoir to infect sheep with scrapie offering challenges to scrapie eradication efforts and
2) CWD spread need not remain geographically confined to current endemic areas, but could occur anywhere that sheep with scrapie and susceptible cervids cohabitate.
This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by intracerebral inoculation with a high attack rate and that the disease that results has similarities to CWD. These experiments will be repeated with a more natural route of inoculation to determine the likelihood of the potential transmission of sheep scrapie to white-tailed deer. If scrapie were to occur in white-tailed deer, results of this study indicate that it would be detected as a TSE, but may be difficult to differentiate from CWD without in-depth biochemical analysis.
2012
PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer
Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA
snip...
The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like.
*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.
Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.
2011
*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.
FRIDAY, APRIL 20, 2018
*** Scrapie Transmits To Pigs By Oral Route, what about the terribly flawed USA tse prion feed ban?
Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies
***> Subject: Scrapie Transmits To Pigs By Oral Route, what about the terribly flawed USA tse prion feed ban? <***
Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies
1a. Objectives (from AD-416):
Moore, S., Kunkle, R., Greenlee, M., Nicholson, E., Richt, J., Hamir, A., Waters, W., Greenlee, J. 2016. Horizontal transmission of chronic wasting disease in reindeer. Emerging Infectious Diseases. 22(12):2142-2145. doi:10.3201/eid2212.160635.
Moore, S.J., West Greenlee, M.H., Smith, J.D., Vrentas, C.E., Nicholson, E.M., Greenlee, J.J. 2016. A comparison of classical and H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism in wild type and EK211 cattle following intracranial inoculation. Frontiers in Veterinary Science. 3:78.
Greenlee, J.J., Kunkle, R.A., Smith, J.D., West Greenlee, M.H. 2016. Scrapie in swine: a diagnostic challenge. Food Safety. 4(4):110-114.
Kondru, N., Manne, S., Greenlee, J., West Greenlee, H., Anantharam, V., Halbur, P., Kanthasamy, A., Kanthasamy, A. 2017. Integrated organotypic slice cultures and RT-QuIC (OSCAR) assay: implications for translational discovery in protein misfolding diseases. Scientific Reports. 7:43155. doi:10.1038/srep43155.
Mammadova, N., Ghaisas, S., Zenitsky, G., Sakaguchi, D.S., Kanthasamy, A.G., Greenlee, J.J., West Greenlee, M.H. 2017. Lasting retinal injury in a mouse model of blast-induced trauma. American Journal of Pathology. 187(7):1459-1472. doi:10.1016/j.ajpath.2017.03.005.
Location: Virus and Prion Research
2017 Annual Report1a. Objectives (from AD-416):
Objective 1: Investigate the mechanisms of protein misfolding in prion disease, including the genetic determinants of misfolding of the prion protein and the environmental influences on protein misfolding as it relates to prion diseases. Subobjective 1.A: Investigate the differences in the unfolded state of wild-type and disease associated prion proteins to better understand the mechanism of misfolding in genetic prion disease. Subobjective 1.B: Investigate the influence of metal ions on the misfolding of the prion protein in vitro to determine if environmental exposure to metal ions may alter disease progression. Objective 2: Investigate the pathobiology of prion strains in natural hosts, including the influence of prion source genotype on interspecies transmission and the pathobiology of atypical transmissible spongiform encephalopathies (TSEs). Subobjective 2.A: Investigate the pathobiology of atypical TSEs. Subobjective 2.B: Investigate the influence of prion source genotype on interspecies transmission. Objective 3: Investigate sampling methodologies for antemortem detection of prion disease, including the utility of blood sampling as a means to assess prion disease status of affected animals and the utility of environmental sampling for monitoring herd prion disease status. Subobjective 3.A: Investigate the utility of blood sampling as a means to assess prion disease status of affected animals. Subobjective 3.B: Investigate the utility of environmental sampling for monitoring herd prion disease status.
1b. Approach (from AD-416):
The studies will focus on three animal transmissible spongiform encephalopathy (TSE) agents found in the United States: bovine spongiform encephalopathy (BSE); scrapie of sheep and goats; and chronic wasting disease (CWD) of deer, elk, and moose. The research will address sites of protein folding and misfolding as it relates to prion disease, accumulation of misfolded protein in the host, routes of infection, and ante mortem diagnostics with an emphasis on controlled conditions and natural routes of infection. Techniques used will include spectroscopic monitoring of protein folding/misfolding, clinical exams, histopathology, immunohistochemistry, and biochemical analysis of proteins. The enhanced knowledge gained from this work will help understand the underlying mechanisms of prion disease and mitigate the potential for unrecognized epidemic expansions of these diseases in populations of animals that could either directly or indirectly affect food animals.
3. Progress Report:
All 8 project plan milestones for FY17 were fully met. Research efforts directed toward meeting objective 1 of our project plan center around the production of recombinant prion protein from either bacteria or mammalian tissue culture systems and collection of thermodynamic data on the folding of the recombinant prion protein produced. Both bacterial and mammalian expression systems have been established. Thermodynamic data addressing the denatured state of wild-type and a disease associated variant of bovine prion protein has been collected and a manuscript is in preparation. In research pertaining to objective 2, all studies have been initiated and animals are under observation for the development of clinical signs. The animal studies for this objective are long term and will continue until onset of clinical signs. In vitro studies planned in parallel to the animals studies have similarly been initiated and are ongoing. Objective 3 of the project plan focuses on the detection of disease associated prion protein in body fluids and feces collected from a time course study of chronic wasting disease inoculated animals. At this time samples are being collected as planned and methods for analysis are under development.
4. Accomplishments
1. Showed that swine are potential hosts for the scrapie agent. A naturally occurring prion disease has not been recognized in swine, but the agent of bovine spongiform encephalopathy does transmit to swine by experimental routes. Swine are thought to have a robust species barrier when exposed to the naturally occurring prion diseases of other species, but the susceptibility of swine to the agent of sheep scrapie has not been thoroughly tested. ARS researchers at Ames, Iowa conducted this experiment to test the susceptibility of swine to U.S. scrapie isolates by intracranial and oral inoculation. Necropsies were done on a subset of animals at approximately 6 months post inoculation (PI): the time the pigs were expected to reach market weight. Remaining pigs were maintained and monitored for clinical signs of transmissible spongiform encephalopathies (TSE) until study termination at 80 months PI or when removed due to intercurrent disease. Brain samples were examined by multiple diagnostic approaches, and for a subset of pigs in each inoculation group, bioassay in mice expressing porcine prion protein. At 6 months PI, no evidence of scrapie infection was noted by any diagnostic method. However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health.
2. Determined that pigs naturally exposed to chronic wasting disease (CWD) may act as a reservoir of CWD infectivity. Chronic wasting disease is a naturally occurring, fatal, neurodegenerative disease of cervids. The potential for swine to serve as a host for the agent of CWD disease is unknown. The purpose of this study was to investigate the susceptibility of swine to the CWD agent following experimental oral or intracranial inoculation. Pigs were assigned to 1 of 3 groups: intracranially inoculated; orally inoculated; or non-inoculated. At market weight age, half of the pigs in each group were tested ('market weight' groups). The remaining pigs ('aged' groups) were allowed to incubate for up to 73 months post inoculation (MPI). Tissues collected at necropsy were examined for disease-associated prion protein (PrPSc) by multiple diagnostic methods. Brain samples from selected pigs were bioassayed in mice expressing porcine prion protein. Some pigs from each inoculated group were positive by one or more tests. Bioassay was positive in 4 out of 5 pigs assayed. Although only small amounts of PrPSc were detected using sensitive methods, this study demonstrates that pigs can serve as hosts for CWD. Detection of infectivity in orally inoculated pigs using mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity. Currently, swine rations in the U.S. could contain animal derived components including materials from deer or elk. In addition, feral swine could be exposed to infected carcasses in areas where CWD is present in wildlife populations. The current feed ban in the U.S. is based exclusively on keeping tissues from TSE infected cattle from entering animal feeds. These results indicating the susceptibility of pigs to CWD, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health.
3. Developed a method for amplification and discrimination of the 3 forms of BSE in cattle. The prion protein (PrP) is a protein that is the causative agent of transmissible spongiform encephalopathies (TSEs). The disease process involves conversion of the normal cellular PrP to a pathogenic misfolded conformation. This conversion process can be recreated in the lab using a misfolding amplification process known as real-time quaking induced conversion (RT-QuIC). RT-QuIC allows the detection of minute amounts of the abnormal infectious form of the prion protein by inducing misfolding in a supplied substrate. Although RT-QuIC has been successfully used to detect pathogenic PrP with substrates from a variety of host species, prior to this work bovine prion protein had not been proven for its practical uses for RT-QuIC. We demonstrated that prions from transmissible mink encephalopathy (TME) and BSE-infected cattle can be detected with using bovine prion proteins with RT-QuIC, and developed an RT-QuIC based approach to discriminate different forms of BSE. This rapid and robust method, both to detect and discriminate BSE types, is of importance as the economic implications for different types of BSE vary greatly.
Review Publications
***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <***
>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <***
THE Aug. 1997 mad cow feed ban was/is a joke, BSE surveillance also was proven to be terribly flawed, along with BSE testing, shown to be flawed as well.
ALSO, WHAT ABOUT CWD TRANSMITTING TO PIGS AS WELL, AND MAD CAMEL DISEASE NOW, BIG OUTBREAK, NOT SPONTANEOUS, WHAT ABOUT THAT, and the feed ban concern there as well? AND what about Scrapie transmission to the Macaque recently. seems the tse prion poker continue to goes up. very worrying...terry
CDC
New Outbreak of TSE Prion in NEW LIVESTOCK SPECIES
Mad Camel Disease
Volume 24, Number 6—June 2018 Research
Prion Disease in Dromedary Camels, Algeria Abstract
Prions cause fatal and transmissible neurodegenerative diseases, including Creutzfeldt-Jakob disease in humans, scrapie in small ruminants, and bovine spongiform encephalopathy (BSE). After the BSE epidemic, and the associated human infections, began in 1996 in the United Kingdom, general concerns have been raised about animal prions. We detected a prion disease in dromedary camels (Camelus dromedarius) in Algeria. Symptoms suggesting prion disease occurred in 3.1% of dromedaries brought for slaughter to the Ouargla abattoir in 2015–2016. We confirmed diagnosis by detecting pathognomonic neurodegeneration and disease-specific prion protein (PrPSc) in brain tissues from 3 symptomatic animals. Prion detection in lymphoid tissues is suggestive of the infectious nature of the disease. PrPSc biochemical characterization showed differences with BSE and scrapie. Our identification of this prion disease in a geographically widespread livestock species requires urgent enforcement of surveillance and assessment of the potential risks to human and animal health.
SNIP...
The possibility that dromedaries acquired the disease from eating prion-contaminated waste needs to be considered.
Tracing the origin of prion diseases is challenging. In the case of CPD, the traditional extensive and nomadic herding practices of dromedaries represent a formidable factor for accelerating the spread of the disease at long distances, making the path of its diffusion difficult to determine. Finally, the major import flows of live animals to Algeria from Niger, Mali, and Mauritania (27) should be investigated to trace the possible origin of CPD from other countries.
Camels are a vital animal species for millions of persons globally. The world camel population has a yearly growth rate of 2.1% (28). In 2014, the population was estimated at ≈28 million animals, but this number is probably underestimated.. Approximately 88% of camels are found in Africa, especially eastern Africa, and 12% are found in Asia. Official data reported 350,000 dromedaries in Algeria in 2014 (28).
On the basis of phenotypic traits and sociogeographic criteria, several dromedary populations have been suggested to exist in Algeria (29). However, recent genetic studies in Algeria and Egypt point to a weak differentiation of the dromedary population as a consequence of historical use as a cross-continental beast of burden along trans-Saharan caravan routes, coupled with traditional extensive/nomadic herding practices (30).
Such genetic homogeneity also might be reflected in PRNP. Studies on PRNP variability in camels are therefore warranted to explore the existence of genotypes resistant to CPD, which could represent an important tool for CPD management as it was for breeding programs for scrapie eradication in sheep. In the past 10 years, the camel farming system has changed rapidly, with increasing setup of periurban dairy farms and dairy plants and diversification of camel products and market penetration (13). This evolution requires improved health standards for infectious diseases and, in light of CPD, for prion diseases.
The emergence of another prion disease in an animal species of crucial importance for millions of persons worldwide makes it necessary to assess the risk for humans and develop evidence-based policies to control and limit the spread of the disease in animals and minimize human exposure. The implementation of a surveillance system for prion diseases would be a first step to enable disease control and minimize human and animal exposure. Finally, the diagnostic capacity of prion diseases needs to be improved in all countries in Africa where dromedaries are part of the domestic livestock.
***> IMPORTS AND EXPORTS <***
***SEE MASSIVE AMOUNTS OF BANNED ANIMAL PROTEIN AKA MAD COW FEED IN COMMERCE USA DECADES AFTER POST BAN ***
THURSDAY, AUGUST 08, 2019
Raccoons accumulate PrPSc after intracranial inoculation with the agents of chronic wasting disease (CWD) or transmissible mink encephalopathy (TME) but not atypical scrapie
SATURDAY, JUNE 1, 2019
***> Traceability of animal protein byproducts in ruminants by multivariate analysis of isotope ratio mass spectrometry to prevent transmission of prion diseases
1: J Infect Dis 1980 Aug;142(2):205-8
Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.
Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.
Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.
snip...
The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.
PMID: 6997404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6997404&dopt=Abstract
Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"
Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.
snip...
76/10.12/4.6
Nature. 1972 Mar 10;236(5341):73-4.
Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).
Gibbs CJ Jr, Gajdusek DC.
Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0
Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)
C. J. GIBBS jun. & D. C. GAJDUSEK
National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland
SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).
IN CONFIDENCE SCRAPIE TRANSMISSION TO CHIMPANZEES
IN CONFIDENCE
reference...
RB3.20
TRANSMISSION TO CHIMPANZEES
1. Kuru and CJD have been successfully transmitted to chimpanzees but scrapie and TME have not.
2. We cannot say that scrapie will not transmit to chimpanzees. There are several scrapie strains and I am not aware that all have been tried (that would have to be from mouse passaged material). Nor has a wide enough range of field isolates subsequently strain typed in mice been inoculated by the appropriate routes (i/c, ilp and i/v) :
3. I believe the proposed experiment to determine transmissibility, if conducted, would only show the susceptibility or resistance of the chimpanzee to infection/disease by the routes used and the result could not be interpreted for the predictability of the susceptibility for man. Proposals for prolonged oral exposure of chimpanzees to milk from cattle were suggested a long while ago and rejected.
4. In view of Dr Gibbs' probable use of chimpazees Mr Wells' comments (enclosed) are pertinent. I have yet to receive a direct communication from Dr Schellekers but before any collaboration or provision of material we should identify the Gibbs' proposals and objectives.
5. A positive result from a chimpanzee challenged severely would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.
6. A negative result would take a lifetime to determine but that would be a shorter period than might be available for human exposure and it would still not answer the question regarding mans' susceptibility. In the meantime no doubt the negativity would be used defensively. It would however be counterproductive if the experiment finally became positive. We may learn more about public reactions following next Monday' s meeting.
R. Bradley
23 September 1990
CVO (+Mr Wells' comments)
Dr T W A Little
Dr B J Shreeve
90/9.23/1.1.
IN CONFIDENCE CHIMPANZEES
CODE 18-77 Reference RB3.46
Some further information that may assist in decision making has been gained by discussion with Dr Rosalind Ridley.
She says that careful study of Gajdusek's work shows no increased susceptibility of chimpanzees over New World Monkeys such as Squirrel Monkeys. She does not think it would tell you anything about the susceptibility to man. Also Gajdusek did not, she believes, challenge chimpanzees with scrapie as severely as we did pigs and we know little of that source of scrapie. Comparisons would be difficult. She also would not expect the Home Office to sanction such experiments here unless there was a very clear and important objective that would be important for human health protection. She doubted such a case could be made. If this is the case she thought it would be unethical to do an experiment abroad because we could not do it in our own country.
Retrospectively she feels they should have put up more marmosets than they did. They all remain healthy. They would normally regard the transmission as negative if no disease resulted in five years.
We are not being asked for a decision but I think that before we made one we should gain as much knowledge as we can. If we decided to proceed we would have to bear any criticisms for many years if there was an adverse view by scientists ormedia. This should not be undertaken lightly. There is already some adverse comment here, I gather, on the pig experiment though that will subside.
The Gibbs' (as' distinct from Schellekers') study is somewhat different. We are merely supplying material for comparative studies in a laboratory with the greatest experience of human SEs in the world and it has been sanctioned by USDA (though we do not know for certain yet if chimpanzees specifically will be used). This would keep it at a lower profile than if we conducted such an experiment in the UK or Europe.
I consider we must have very powerful and defendable objectives to go beyond Gibbs' proposed experiments and should not initiate others just because an offer has been made.
Scientists have a responsibility to seek other methods of investigative research other than animal experimentation. At present no objective has convinced me we need to do research using Chimpanzees - a species in need of protection. Resisting such proposals would enable us to communicate that information to the scientist and the public should the need arise. A line would have been drawn.
CVO cc Dr T Dr B W A Little Dr B J Shreeve
R Bradley
26 September 1990
90/9.26/3.2
Possible Changes in the Scrapie Agent
I AM NOT AN ADVOCATE FOR EXPERIMENTAL USE OF CHIMPANZEES AS TEST VICTIMS. However, I would be an advocate for (and i have said this before over the years), of death row inmates being used. Their families could be compensated with a monetary award, and the death row inmates could do one final thing for the good of humanity. There going to die anyway. just my opinion. ...TSS-2011
POLICY - RESTRICTED
CREUTZFELDT-JAKOB DISEASE: 3RD ANNUAL REPORT OF THE UK SURVEILLANCE UNIT
1. This submission, which has been agreed with colleagues in HEF(M). alerts PS(L) to the contents of the forthcoming annual report of the CJD Surveillance Unit and presents options for publication. It also highlights concern over the presentation of results which could be misrepresented by the media and others as evidence of a lilnk between CJD and the consumption of veal. ...
RECOMMENDATION
2. PS(L) is invited to agree the recommendation at para 13.
PROBLEM
7. The main findings in the case-control study were STATISTICALLY SIGNIFICANT ASSOCIATIONS BETWEEN CONSUMPTION OF VEAL OR VENISON AND THE DEVELOPMENT OF CJD (INCREASED RISKS OF 2-13x). There was also evidence of a dose-response relationship between dietary exposure and development of the disease. (Last year's findings showed an apparent association between eating black pudding and risk of CJD which was neither statistically significant nor biologically plausible - interestingly, this has not been (replicated was marked out with something i cannot read), and then this complete sentence was marked through to be replaced ;
THIS YEAR'S FINDINGS SHOW A NUMBER OF ASSOCIATIONS BUT THE STRONGEST IS FOR VEAL.
IP PS(L) wishes to probe this further we think it best to explain the matter VERBALLY. The problem is how to present the findings in this year's annual report in a way which avoids unnecessary public alarm and limits the scope for media scare stores. (or the facts...TSS)
This is of considerable concern given recent development. In particular Ministers will be particularly concerned about the European dimension given the recent troubles with the Germans.
9. DH doctors advise - and we understand Dr Wills agrees - that the association the study found between the developments of CJD and veal consumption cannot be regarded as demonstrating a causal relationship or give any reason to change the advice that eating beef and veal is safe. IF PS(L) wishes to probe this further we think it best to explain the matter verbally. The problem is how to present the findings in this year's annual report in a way which avoids unnecessary public alarm and limits the scope for media scare stories.
Next steps ...
snip... full text ;
PROBLEM
7. The main findings in the case-control study were STATISTICALLY SIGNIFICANT ASSOCIATIONS BETWEEN CONSUMPTION OF VEAL OR VENISON AND THE DEVELOPMENT OF CJD (INCREASED RISKS OF 2-13x). There was also evidence of a dose-response relationship between dietary exposure and development of the disease. (Last year's findings showed an apparent association between eating black pudding and risk of CJD which was neither statistically significant nor biologically plausible - interestingly, this has not been (replicated was marked out with something i cannot read), and then this complete sentence was marked through to be replaced ;
see watered down report here ;
Lessons from BSE
4. In retrospect, a problem of scrapie transmission in feedstuffs was perhaps predictable.
Poultry feeding and Fish farming may be particular areas worth studying...
IN CONFIDENCE
NOT FOR PUBLICATION
STRICTLY PRIVATE AND CONFIDENTIAL 25, AUGUST 1995
snip...
To minimise the risk of farmers' claims for compensation from feed compounders.
To minimise the potential damage to compound feed markets through adverse publicity.
To maximise freedom of action for feed compounders, notably by maintaining the availability of meat and bone meal as a raw material in animal feeds, and ensuring time is available to make any changes which may be required.
snip...
THE FUTURE
4..........
MAFF remains under pressure in Brussels and is not skilled at handling potentially explosive issues.
5. Tests _may_ show that ruminant feeds have been sold which contain illegal traces of ruminant protein. More likely, a few positive test results will turn up but proof that a particular feed mill knowingly supplied it to a particular farm will be difficult if not impossible.
6. The threat remains real and it will be some years before feed compounders are free of it. The longer we can avoid any direct linkage between feed milling _practices_ and actual BSE cases, the more likely it is that serious damage can be avoided. ...
Differentiation of ruminant transmissible spongiform encephalopathy isolate types, including bovine spongiform encephalopathy and CH1641 scrapie
J. G. Jacobs1, M. Sauer2, L. J. M. van Keulen1, Y. Tang2, A. Bossers1 and J. P. M. Langeveld1
1 Department of Infection Biology, Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands 2 Department of Molecular Pathogenesis and Genetics, Veterinary Laboratories Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
Correspondence J. P. M. Langeveld jan.langeveld@wur.nl
With increased awareness of the diversity of transmissible spongiform encephalopathy (TSE) strains in the ruminant population, comes an appreciation of the need for improved methods of differential diagnosis. Exposure to bovine spongiform encephalopathy (BSE) has been associated with the human TSE, variant Creutzfeldt–Jakob disease, emphasizing the necessity in distinguishing low-risk TSE types from BSE. TSE type discrimination in ruminants such as cattle, sheep, goats and deer, requires the application of several prion protein (PrP)-specific antibodies in parallel immunochemical tests on brain homogenates or tissue sections from infected animals. This study uses in a single incubation step, three PrP-specific antibodies and fluorescent Alexa dye-labelled anti-mouse Fabs on a Western blot. The usual amount of brain tissue needed is 0.5 mg. This multiplex application of antibodies directed towards three different PrP epitopes enabled differential diagnosis of all established main features of classical scrapie, BSE and Nor98-like scrapie in sheep and goats, as well as the currently known BSE types C, H and L in cattle. Moreover, due to an antibody-dependent dual PrP-banding pattern, for the first time CH1641 scrapie of sheep can be reliably discriminated from the other TSE isolate types in sheep.
Wednesday, February 16, 2011
IN CONFIDENCE
SCRAPIE TRANSMISSION TO CHIMPANZEES
IN CONFIDENCE
Among ovine TSEs, classical scrapie and Nor98 were discriminated from both Norwegian moose isolates, while CH1641 samples had molecular features partially overlapping with the moose, i.e. a low MW PrPres and the presence of CTF13. In contrast, moose PrPSc did not overlap with any bovine PrPSc. Indeed, the MW of moose PrPres was lower than H-BSE and similar to C-BSE and L-BSE PrPres, but the two bovine prions lacked additional PrPres fragments.
Conclusions: Unexpectedly, PrPSc from Norwegian moose revealed features substantially different from all other CWD isolates. The PrPSc pattern of Norwegian moose was also different from Canadian moose, suggesting that the variant PrPSc type observed does not simply reflect a host factor and could represent a new CWD strain. Furthermore, PrPSc of Norwegian moose can be easily discriminated from all BSE types, classical scrapie and Nor98, while showing significant overlapping only with CH1641. Bioassay in voles will help to clarify whether the different PrPSc types observed reflect the presence of a new CWD strain in Norwegian moose, and its relationships with known animal TSEs.
References: 1Benestad et al, Vet Res (2016}47:88
PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS
please see;
***Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle.
In the US, scrapie is reported primarily in sheep homozygous for 136A/171Q (AAQQ) and the disease phenotype is similar to that seen with experimental strain CH1641.
***Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle.
P-088 Transmission of experimental CH1641-like scrapie to bovine PrP overexpression mice
Kohtaro Miyazawa1, Kentaro Masujin1, Hiroyuki Okada1, Yuichi Matsuura1, Takashi Yokoyama2
1Influenza and Prion Disease Research Center, National Institute of Animal Health, NARO, Japan; 2Department of Planning and General Administration, National Institute of Animal Health, NARO
Introduction: Scrapie is a prion disease in sheep and goats. CH1641-lke scrapie is characterized by a lower molecular mass of the unglycosylated form of abnormal prion protein (PrpSc) compared to that of classical scrapie. It is worthy of attention because of the biochemical similarities of the Prpsc from CH1641-like and BSE affected sheep. We have reported that experimental CH1641-like scrapie is transmissible to bovine PrP overexpression (TgBoPrP) mice (Yokoyama et al. 2010). We report here the further details of this transmission study and compare the biological and biochemical properties to those of classical scrapie affected TgBoPrP mice.
Methods: The details of sheep brain homogenates used in this study are described in our previous report (Yokoyama et al. 2010). TgBoPrP mice were intracerebrally inoculated with a 10% brain homogenate of each scrapie strain. The brains of mice were subjected to histopathological and biochemical analyses.
Results: Prpsc banding pattern of CH1641-like scrapie affected TgBoPrP mice was similar to that of classical scrapie affected mice. Mean survival period of CH1641-like scrapie affected TgBoPrP mice was 170 days at the 3rd passage and it was significantly shorter than that of classical scrapie affected mice (439 days). Lesion profiles and Prpsc distributions in the brains also differed between CH1641-like and classical scrapie affected mice.
Conclusion: We succeeded in stable transmission of CH1641-like scrapie to TgBoPrP mice. Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle.
snip...
In the US, scrapie is reported primarily in sheep homozygous for 136A/171Q (AAQQ) and the disease phenotype is similar to that seen with experimental strain CH1641.
snip...see ;
TUESDAY, JUNE 13, 2017
PRION 2017 CONFERENCE ABSTRACT Chronic Wasting Disease in European moose is associated with PrPSc features different from North American CWD
FRIDAY, NOVEMBER 08, 2019
EFSA Panel on Biological Hazards (BIOHAZ) Update on chronic wasting disease (CWD) III
TUESDAY, OCTOBER 29, 2019
USDA Abruptly Halts Animal ID Plan As Experts Testify USA Underprepared For Bioterrorism Threats Such As BSE TSE Prion aka Mad Cow Disease
FRIDAY, OCTOBER 11, 2019
CattleTrace to Host First-Ever Industry Symposium
TUESDAY, MARCH 26, 2019
USDA ARS 2018 USAHA RESOLUTIONS TWO PRONGED APPROACH NEEDED FOR ADVANCING CATTLE TRACEABILITY
RESOLUTION NUMBER: 34 APPROVED
SOURCE: COMMITTEE ON CATTLE AND BISON
MONDAY, MAY 20, 2019
Tracking and clarifying differential traits of classical- and atypical L-type bovine spongiform encephalopathy prions after transmission from cattle to cynomolgus monkeys
SUNDAY, APRIL 14, 2019
Estimation of prion infectivity in tissues of cattle infected with atypical BSE by real time-quaking induced conversion assay
WEDNESDAY, APRIL 24, 2019
USDA Announces Atypical Bovine Spongiform Encephalopathy Detection Aug 29, 2018 A Review of Science 2019
WEDNESDAY, JULY 31, 2019
The agent of transmissible mink encephalopathy passaged in sheep is similar to BSE-L
THE tse prion aka mad cow type disease is not your normal pathogen.
The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit.
you cannot cook the TSE prion disease out of meat.
you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE.
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well.
the TSE prion agent also survives Simulated Wastewater Treatment Processes.
IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades.
you can bury it and it will not go away.
The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area.
it’s not your ordinary pathogen you can just cook it out and be done with.
***> that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.
2018 - 2019
***> This is very likely to have parallels with control efforts for CWD in cervids.
Rapid recontamination of a farm building occurs after attempted prion removal
Kevin Christopher Gough, BSc (Hons), PhD1, Claire Alison Baker, BSc (Hons)2, Steve Hawkins, MIBiol3, Hugh Simmons, BVSc, MRCVS, MBA, MA3, Timm Konold, DrMedVet, PhD, MRCVS3 and Ben Charles Maddison, BSc (Hons), PhD2
Abstract
The transmissible spongiform encephalopathy scrapie of sheep/goats and chronic wasting disease of cervids are associated with environmental reservoirs of infectivity.
Preventing environmental prions acting as a source of infectivity to healthy animals is of major concern to farms that have had outbreaks of scrapie and also to the health management of wild and farmed cervids.
Here, an efficient scrapie decontamination protocol was applied to a farm with high levels of environmental contamination with the scrapie agent.
Post-decontamination, no prion material was detected within samples taken from the farm buildings as determined using a sensitive in vitro replication assay (sPMCA).
A bioassay consisting of 25 newborn lambs of highly susceptible prion protein genotype VRQ/VRQ introduced into this decontaminated barn was carried out in addition to sampling and analysis of dust samples that were collected during the bioassay.
Twenty-four of the animals examined by immunohistochemical analysis of lymphatic tissues were scrapie-positive during the bioassay, samples of dust collected within the barn were positive by month 3.
The data illustrates the difficulty in decontaminating farm buildings from scrapie, and demonstrates the likely contribution of farm dust to the recontamination of these environments to levels that are capable of causing disease.
snip...
As in the authors' previous study,12 the decontamination of this sheep barn was not effective at removing scrapie infectivity, and despite the extra measures brought into this study (more effective chemical treatment and removal of sources of dust) the overall rates of disease transmission mirror previous results on this farm. With such apparently effective decontamination (assuming that at least some sPMCA seeding ability is coincident with infectivity), how was infectivity able to persist within the environment and where does infectivity reside? Dust samples were collected in both the bioassay barn and also a barn subject to the same decontamination regime within the same farm (but remaining unoccupied). Within both of these barns dust had accumulated for three months that was able to seed sPMCA, indicating the accumulation of scrapie-containing material that was independent of the presence of sheep that may have been incubating and possibly shedding low amounts of infectivity.
This study clearly demonstrates the difficulty in removing scrapie infectivity from the farm environment. Practical and effective prion decontamination methods are still urgently required for decontamination of scrapie infectivity from farms that have had cases of scrapie and this is particularly relevant for scrapiepositive goatherds, which currently have limited genetic resistance to scrapie within commercial breeds.24 This is very likely to have parallels with control efforts for CWD in cervids.
Acknowledgements The authors thank the APHA farm staff, Tony Duarte, Olly Roberts and Margaret Newlands for preparation of the sheep pens and animal husbandry during the study. The authors also thank the APHA pathology team for RAMALT and postmortem examination.
Funding This study was funded by DEFRA within project SE1865.
Competing interests None declared.
Saturday, January 5, 2019
Rapid recontamination of a farm building occurs after attempted prion removal
THURSDAY, FEBRUARY 28, 2019
BSE infectivity survives burial for five years with only limited spread
***> CONGRESSIONAL ABSTRACTS PRION CONFERENCE 2018
P69 Experimental transmission of CWD from white-tailed deer to co-housed reindeer
Mitchell G (1), Walther I (1), Staskevicius A (1), Soutyrine A (1), Balachandran A (1)
(1) National & OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada.
Chronic wasting disease (CWD) continues to be detected in wild and farmed cervid populations of North America, affecting predominantly white-tailed deer, mule deer and elk. Extensive herds of wild caribou exist in northern regions of Canada, although surveillance has not detected the presence of CWD in this population. Oral experimental transmission has demonstrated that reindeer, a species closely related to caribou, are susceptible to CWD. Recently, CWD was detected for the first time in Europe, in wild Norwegian reindeer, advancing the possibility that caribou in North America could also become infected. Given the potential overlap in habitat between wild CWD-infected cervids and wild caribou herds in Canada, we sought to investigate the horizontal transmissibility of CWD from white-tailed deer to reindeer.
Two white-tailed deer were orally inoculated with a brain homogenate prepared from a farmed Canadian white-tailed deer previously diagnosed with CWD. Two reindeer, with no history of exposure to CWD, were housed in the same enclosure as the white-tailed deer, 3.5 months after the deer were orally inoculated. The white-tailed deer developed clinical signs consistent with CWD beginning at 15.2 and 21 months post-inoculation (mpi), and were euthanized at 18.7 and 23.1 mpi, respectively. Confirmatory testing by immunohistochemistry (IHC) and western blot demonstrated widespread aggregates of pathological prion protein (PrPCWD) in the central nervous system and lymphoid tissues of both inoculated white-tailed deer. Both reindeer were subjected to recto-anal mucosal associated lymphoid tissue (RAMALT) biopsy at 20 months post-exposure (mpe) to the white-tailed deer. The biopsy from one reindeer contained PrPCWD confirmed by IHC. This reindeer displayed only subtle clinical evidence of disease prior to a rapid decline in condition requiring euthanasia at 22.5 mpe. Analysis of tissues from this reindeer by IHC revealed widespread PrPCWD deposition, predominantly in central nervous system and lymphoreticular tissues. Western blot molecular profiles were similar between both orally inoculated white-tailed deer and the CWD positive reindeer. Despite sharing the same enclosure, the other reindeer was RAMALT negative at 20 mpe, and PrPCWD was not detected in brainstem and lymphoid tissues following necropsy at 35 mpe. Sequencing of the prion protein gene from both reindeer revealed differences at several codons, which may have influenced susceptibility to infection.
Natural transmission of CWD occurs relatively efficiently amongst cervids, supporting the expanding geographic distribution of disease and the potential for transmission to previously naive populations. The efficient horizontal transmission of CWD from white-tailed deer to reindeer observed here highlights the potential for reindeer to become infected if exposed to other cervids or environments infected with CWD.
***> Infectious agent of sheep scrapie may persist in the environment for at least 16 years
***> Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded.
Gudmundur Georgsson,1 Sigurdur Sigurdarson2 and Paul Brown3
Correspondence
Gudmundur Georgsson ggeorgs@hi.is
1 Institute for Experimental Pathology, University of Iceland, Keldur v/vesturlandsveg, IS-112 Reykjavı´k, Iceland
2 Laboratory of the Chief Veterinary Officer, Keldur, Iceland
3 Bethesda, Maryland, USA
Received 7 March 2006 Accepted 6 August 2006
In 1978, a rigorous programme was implemented to stop the spread of, and subsequently eradicate, sheep scrapie in Iceland. Affected flocks were culled, premises were disinfected and, after 2–3 years, restocked with lambs from scrapie-free areas. Between 1978 and 2004, scrapie recurred on 33 farms. Nine of these recurrences occurred 14–21 years after culling, apparently as the result of environmental contamination, but outside entry could not always be absolutely excluded. Of special interest was one farm with a small, completely self-contained flock where scrapie recurred 18 years after culling, 2 years after some lambs had been housed in an old sheephouse that had never been disinfected. Epidemiological investigation established with near certitude that the disease had not been introduced from the outside and it is concluded that the agent may have persisted in the old sheep-house for at least 16 years.
TITLE: PATHOLOGICAL FEATURES OF CHRONIC WASTING DISEASE IN REINDEER AND DEMONSTRATION OF HORIZONTAL TRANSMISSION
*** DECEMBER 2016 CDC EMERGING INFECTIOUS DISEASE JOURNAL CWD HORIZONTAL TRANSMISSION
SEE;
Back around 2000, 2001, or so, I was corresponding with officials abroad during the bse inquiry, passing info back and forth, and some officials from here inside USDA aphis FSIS et al. In fact helped me get into the USA 50 state emergency BSE conference call way back. That one was a doozy. But I always remember what “deep throat” I never knew who they were, but I never forgot;
Some unofficial information from a source on the inside looking out -
Confidential!!!!
As early as 1992-3 there had been long studies conducted on small pastures containing scrapie infected sheep at the sheep research station associated with the Neuropathogenesis Unit in Edinburgh, Scotland. Whether these are documented...I don't know. But personal recounts both heard and recorded in a daily journal indicate that leaving the pastures free and replacing the topsoil completely at least 2 feet of thickness each year for SEVEN years....and then when very clean (proven scrapie free) sheep were placed on these small pastures.... the new sheep also broke out with scrapie and passed it to offspring. I am not sure that TSE contaminated ground could ever be free of the agent!! A very frightening revelation!!!
---end personal email---end...tss
Infectivity surviving ashing to 600*C is (in my opinion) degradable but infective. based on Bown & Gajdusek, (1991), landfill and burial may be assumed to have a reduction factor of 98% (i.e. a factor of 50) over 3 years. CJD-infected brain-tissue remained infectious after storing at room-temperature for 22 months (Tateishi et al, 1988). Scrapie agent is known to remain viable after at least 30 months of desiccation (Wilson et al, 1950). and pastures that had been grazed by scrapie-infected sheep still appeared to be contaminated with scrapie agent three years after they were last occupied by sheep (Palsson, 1979).
Dr. Paul Brown Scrapie Soil Test BSE Inquiry Document
THURSDAY, FEBRUARY 28, 2019
BSE infectivity survives burial for five years with only limited spread
Using in vitro Prion replication for high sensitive detection of prions and prionlike proteins and for understanding mechanisms of transmission.
Claudio Soto Mitchell Center for Alzheimer's diseases and related Brain disorders, Department of Neurology, University of Texas Medical School at Houston.
Prion and prion-like proteins are misfolded protein aggregates with the ability to selfpropagate to spread disease between cells, organs and in some cases across individuals. I n T r a n s m i s s i b l e s p o n g i f o r m encephalopathies (TSEs), prions are mostly composed by a misfolded form of the prion protein (PrPSc), which propagates by transmitting its misfolding to the normal prion protein (PrPC). The availability of a procedure to replicate prions in the laboratory may be important to study the mechanism of prion and prion-like spreading and to develop high sensitive detection of small quantities of misfolded proteins in biological fluids, tissues and environmental samples. Protein Misfolding Cyclic Amplification (PMCA) is a simple, fast and efficient methodology to mimic prion replication in the test tube. PMCA is a platform technology that may enable amplification of any prion-like misfolded protein aggregating through a seeding/nucleation process. In TSEs, PMCA is able to detect the equivalent of one single molecule of infectious PrPSc and propagate prions that maintain high infectivity, strain properties and species specificity. Using PMCA we have been able to detect PrPSc in blood and urine of experimentally infected animals and humans affected by vCJD with high sensitivity and specificity. Recently, we have expanded the principles of PMCA to amplify amyloid-beta (Aβ) and alphasynuclein (α-syn) aggregates implicated in Alzheimer's and Parkinson's diseases, respectively. Experiments are ongoing to study the utility of this technology to detect Aβ and α-syn aggregates in samples of CSF and blood from patients affected by these diseases.
=========================
***>>> Recently, we have been using PMCA to study the role of environmental prion contamination on the horizontal spreading of TSEs. These experiments have focused on the study of the interaction of prions with plants and environmentally relevant surfaces. Our results show that plants (both leaves and roots) bind tightly to prions present in brain extracts and excreta (urine and feces) and retain even small quantities of PrPSc for long periods of time. Strikingly, ingestion of prioncontaminated leaves and roots produced disease with a 100% attack rate and an incubation period not substantially longer than feeding animals directly with scrapie brain homogenate. Furthermore, plants can uptake prions from contaminated soil and transport them to different parts of the plant tissue (stem and leaves). Similarly, prions bind tightly to a variety of environmentally relevant surfaces, including stones, wood, metals, plastic, glass, cement, etc. Prion contaminated surfaces efficiently transmit prion disease when these materials were directly injected into the brain of animals and strikingly when the contaminated surfaces were just placed in the animal cage. These findings demonstrate that environmental materials can efficiently bind infectious prions and act as carriers of infectivity, suggesting that they may play an important role in the horizontal transmission of the disease.
========================
Since its invention 13 years ago, PMCA has helped to answer fundamental questions of prion propagation and has broad applications in research areas including the food industry, blood bank safety and human and veterinary disease diagnosis.
New studies on the heat resistance of hamster-adapted scrapie agent: Threshold survival after ashing at 600°C suggests an inorganic template of replication
Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production
Detection of protease-resistant cervid prion protein in water from a CWD-endemic area
A Quantitative Assessment of the Amount of Prion Diverted to Category 1 Materials and Wastewater During Processing
Rapid assessment of bovine spongiform encephalopathy prion inactivation by heat treatment in yellow grease produced in the industrial manufacturing process of meat and bone meals
PPo4-4:
Survival and Limited Spread of TSE Infectivity after Burial
Discussion Classical scrapie is an environmentally transmissible disease because it has been reported in naïve, supposedly previously unexposed sheep placed in pastures formerly occupied by scrapie-infected sheep (4, 19, 20).
Although the vector for disease transmission is not known, soil is likely to be an important reservoir for prions (2) where – based on studies in rodents – prions can adhere to minerals as a biologically active form (21) and remain infectious for more than 2 years (22).
Similarly, chronic wasting disease (CWD) has re-occurred in mule deer housed in paddocks used by infected deer 2 years earlier, which was assumed to be through foraging and soil consumption (23).
Our study suggested that the risk of acquiring scrapie infection was greater through exposure to contaminated wooden, plastic, and metal surfaces via water or food troughs, fencing, and hurdles than through grazing.
Drinking from a water trough used by the scrapie flock was sufficient to cause infection in sheep in a clean building.
Exposure to fences and other objects used for rubbing also led to infection, which supported the hypothesis that skin may be a vector for disease transmission (9).
The risk of these objects to cause infection was further demonstrated when 87% of 23 sheep presented with PrPSc in lymphoid tissue after grazing on one of the paddocks, which contained metal hurdles, a metal lamb creep and a water trough in contact with the scrapie flock up to 8 weeks earlier, whereas no infection had been demonstrated previously in sheep grazing on this paddock, when equipped with new fencing and field furniture.
When the contaminated furniture and fencing were removed, the infection rate dropped significantly to 8% of 12 sheep, with soil of the paddock as the most likely source of infection caused by shedding of prions from the scrapie-infected sheep in this paddock up to a week earlier.
This study also indicated that the level of contamination of field furniture sufficient to cause infection was dependent on two factors: stage of incubation period and time of last use by scrapie-infected sheep.
Drinking from a water trough that had been used by scrapie sheep in the predominantly pre-clinical phase did not appear to cause infection, whereas infection was shown in sheep drinking from the water trough used by scrapie sheep in the later stage of the disease.
It is possible that contamination occurred through shedding of prions in saliva, which may have contaminated the surface of the water trough and subsequently the water when it was refilled.
Contamination appeared to be sufficient to cause infection only if the trough was in contact with sheep that included clinical cases.
Indeed, there is an increased risk of bodily fluid infectivity with disease progression in scrapie (24) and CWD (25) based on PrPSc detection by sPMCA.
Although ultraviolet light and heat under natural conditions do not inactivate prions (26), furniture in contact with the scrapie flock, which was assumed to be sufficiently contaminated to cause infection, did not act as vector for disease if not used for 18 months, which suggest that the weathering process alone was sufficient to inactivate prions.
PrPSc detection by sPMCA is increasingly used as a surrogate for infectivity measurements by bioassay in sheep or mice.
In this reported study, however, the levels of PrPSc present in the environment were below the limit of detection of the sPMCA method, yet were still sufficient to cause infection of in-contact animals.
In the present study, the outdoor objects were removed from the infected flock 8 weeks prior to sampling and were positive by sPMCA at very low levels (2 out of 37 reactions).
As this sPMCA assay also yielded 2 positive reactions out of 139 in samples from the scrapie-free farm, the sPMCA assay could not detect PrPSc on any of the objects above the background of the assay.
False positive reactions with sPMCA at a low frequency associated with de novo formation of infectious prions have been reported (27, 28).
This is in contrast to our previous study where we demonstrated that outdoor objects that had been in contact with the scrapie-infected flock up to 20 days prior to sampling harbored PrPSc that was detectable by sPMCA analysis [4 out of 15 reactions (12)] and was significantly more positive by the assay compared to analogous samples from the scrapie-free farm.
This discrepancy could be due to the use of a different sPMCA substrate between the studies that may alter the efficiency of amplification of the environmental PrPSc.
In addition, the present study had a longer timeframe between the objects being in contact with the infected flock and sampling, which may affect the levels of extractable PrPSc.
Alternatively, there may be potentially patchy contamination of this furniture with PrPSc, which may have been missed by swabbing.
The failure of sPMCA to detect CWD-associated PrP in saliva from clinically affected deer despite confirmation of infectivity in saliva-inoculated transgenic mice was associated with as yet unidentified inhibitors in saliva (29), and it is possible that the sensitivity of sPMCA is affected by other substances in the tested material.
In addition, sampling of amplifiable PrPSc and subsequent detection by sPMCA may be more difficult from furniture exposed to weather, which is supported by the observation that PrPSc was detected by sPMCA more frequently in indoor than outdoor furniture (12).
A recent experimental study has demonstrated that repeated cycles of drying and wetting of prion-contaminated soil, equivalent to what is expected under natural weathering conditions, could reduce PMCA amplification efficiency and extend the incubation period in hamsters inoculated with soil samples (30).
This seems to apply also to this study even though the reduction in infectivity was more dramatic in the sPMCA assays than in the sheep model.
Sheep were not kept until clinical end-point, which would have enabled us to compare incubation periods, but the lack of infection in sheep exposed to furniture that had not been in contact with scrapie sheep for a longer time period supports the hypothesis that prion degradation and subsequent loss of infectivity occurs even under natural conditions.
In conclusion, the results in the current study indicate that removal of furniture that had been in contact with scrapie-infected animals should be recommended, particularly since cleaning and decontamination may not effectively remove scrapie infectivity (31), even though infectivity declines considerably if the pasture and the field furniture have not been in contact with scrapie-infected sheep for several months. As sPMCA failed to detect PrPSc in furniture that was subjected to weathering, even though exposure led to infection in sheep, this method may not always be reliable in predicting the risk of scrapie infection through environmental contamination.
These results suggest that the VRQ/VRQ sheep model may be more sensitive than sPMCA for the detection of environmentally associated scrapie, and suggest that extremely low levels of scrapie contamination are able to cause infection in susceptible sheep genotypes.
Keywords: classical scrapie, prion, transmissible spongiform encephalopathy, sheep, field furniture, reservoir, serial protein misfolding cyclic amplification
Wednesday, December 16, 2015
*** Objects in contact with classical scrapie sheep act as a reservoir for scrapie transmission ***
WEDNESDAY, MARCH 13, 2019
CWD, TSE, PRION, MATERNAL mother to offspring, testes, epididymis, seminal fluid, and blood
Subject: Prion 2019 Conference
See full Prion 2019 Conference Abstracts
see scientific program and follow the cwd studies here;
Thursday, May 23, 2019
Prion 2019 Emerging Concepts CWD, BSE, SCRAPIE, CJD, SCIENTIFIC PROGRAM Schedule and Abstracts
FRIDAY, MAY 24, 2019
Assessing chronic wasting disease strain differences in free-ranging cervids across the United States
MONDAY, MAY 20, 2019
APHIS, USDA, Announces the Finalized Chronic Wasting Disease Herd Certification Program Standards Singeltary Submissions
SUNDAY, JULY 14, 2019
Korea Chronic Wasting Disease CWD TSE Prion additional cases were observed in red deer, sika deer, and their crossbred deer in 2010 and 2016, beyond that, anyone's guess
Korea Chronic Wasting Disease CWD TSE Prion additional cases were observed in red deer, sika deer, and their crossbred deer in 2010 and 2016
In Korea, CWD was only confirmed in elk in 2001, 2004, and 2005 [13]; however, additional cases were observed in red deer, sika deer, and their crossbred deer in 2010 and 2016 [14]. Therefore, it is important to prevent CWD recurrence in the Republic of Korea, and farmers that have experienced a CWD outbreak are required to disinfect the farm before reintroducing the cervids. Thus, farmers require a disinfectant solution that is marketed and readily available to effectively inactivate prions.
[14] Sohn HJ, Roh IS, Kim HJ, et al. Epidemiology of chronic wasting disease in Korea. Prion. 2106;10 (supp1):S16–S17
WS-03: Epidemiology of chronic wasting disease in Korea
Hyun Joo Sohn
In Soon Roh
Hyo Jin Kim
Tae Young Suh
Kyung Je Park
Hoo Chang Park
Byounghan Kim
Foreign Animal Disease Division (FADD), Animal and Plant Quarantine Agency (QIA), Gimcheon, Korea
Transmissible spongiform encephalopathy (TSE) is a fatal neurodegenerative disorder, which is so-called as prion diseases due to the causative agents (PrPSc). TSEs are believed to be due to the template-directed accumulation of disease-associated prion protein, generally designated PrPSc. Based on export information of Chronic wasting disease (CWD) suspected elk from Canada to Korea, CWD surveilance program was initiated by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) in 2001. CWD control measures included stamping out of all animals in the affected farm, and through cleaning and disinfection of the premises. In addition, nationwide clinical surveillance of Korean native cervid and improved measures to ensure reporting of CWD suspect cases were implemented. Total of 9 elks were found to be affected. CWD was designated as a notifiable disease under the Act for Prevention of Livestock Epidemics in 2002. Additional CWD cases– 12 elks and 2 elks – were diagnosed in 2004 and 2005. On 2010, 6 elks, 7 sika deer, one red deer and 5 cross-breeds were confirmed as positive. Further epidemiological investigations showed that these CWD outbreaks were linked to the importation of elks from Canada in 1994 based on circumstantial evidences. CWD is the prion disease that is known spread horizontally. The experimental studies have shown that PrPCWD is capable of transmitting CWD through saliva and blood. We conducted sPMCA and animal biosassy using contaminated soils in the playground of farm 2 which considered horizontal transmission between cervid and have been confirmed infectious PrPCWD. This result suggests PrPCWD shedding in the CWD contaminated soil is progressive through the disease course.
Keywords: CWD, soil, sPMCA
WEDNESDAY, OCTOBER 16, 2019
Australia Assessment of bulk wheat from Canada Part B: Animal biosecurity risk advice, CWD TSE Prion concerns are mounting
THURSDAY, AUGUST 08, 2019
Raccoons accumulate PrPSc after intracranial inoculation with the agents of chronic wasting disease (CWD) or transmissible mink encephalopathy (TME) but not atypical scrapie
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
FRIDAY, JULY 26, 2019
Chronic Wasting Disease in Cervids: Implications for Prion Transmission to Humans and Other Animal Species
WEDNESDAY, DECEMBER 25, 2019
Montana 16 more deer positive for CWD first time positive hunting district 705 in southeast
WEDNESDAY, DECEMBER 25, 2019
Minnesota DNR slaps temporary ban on movement of farmed deer in Minnesota due to CWD TSE Prion
SATURDAY, DECEMBER 07, 2019
Montana Chronic wasting disease CWD TSE Prion explodes to 91 Cases This Year, with 25 of those confirmed last week
CWD WEBINAR CWD YESTERDAY! December 11, 2019
Dr. Mckenzie and CIDRAP on CWD TSE Prion
122: Prions and Chronic Wasting Disease with Jason Bartz
Texas CWD Symposium: Transmission by Saliva, Feces, Urine & Blood
the other part, these tissues and things in the body then shed or secrete prions which then are the route to other animals into the environment, so in particular, the things, the secretions that are infectious are salvia, feces, blood and urine. so pretty much anything that comes out of a deer is going to be infectious and potential for transmitting disease.
''On January 21, 2017 a tornado took down thousands of feet of fence for a 420-acre illegal deer enclosure in Lamar County that had been subject to federal and state investigation for illegally importing white-tailed deer into Mississippi from Texas (a CWD positive state). Native deer were free to move on and off the property before all of the deer were able to be tested for CWD. Testing will be made available for a period of three years for CWD on the property and will be available for deer killed within a 5-mile radius of the property on a voluntary basis. ''
Texas Chronic Wasting Disease CWD TSE Prion Symposium 2018 posted January 2019 VIDEO SET 18 CLIPS
See Wisconsin update...terrible news, right after Texas updated map around 5 minute mark...
WISCONSIN CWD CAPTIVE CWD UPDATE VIDEO
cwd update on Wisconsin from Tammy Ryan...
Wyoming CWD Dr. Mary Wood
''first step is admitting you have a problem''
''Wyoming was behind the curve''
wyoming has a problem...
SATURDAY, JANUARY 19, 2019
Texas Chronic Wasting Disease CWD TSE Prion Symposium 2018 posted January 2019 VIDEO SET 18 CLIPS
TEXAS BREEDER DEER ESCAPEE WITH CWD IN THE WILD, or so the genetics would show?
OH NO, please tell me i heard this wrong, a potential Texas captive escapee with cwd in the wild, in an area with positive captive cwd herd?
apparently, no ID though. tell me it ain't so please...
23:00 minute mark
''Free Ranging Deer, Dr. Deyoung looked at Genetics of this free ranging deer and what he found was, that the genetics on this deer were more similar to captive deer, than the free ranging population, but he did not see a significant connection to any one captive facility that he analyzed, so we believe, Ahhhhhh, this animal had some captive ahhh, whatnot.''
Wyoming CWD Dr. Mary Wood
''first step is admitting you have a problem''
''Wyoming was behind the curve''
wyoming has a problem...
the other part, these tissues and things in the body then shed or secrete prions which then are the route to other animals into the environment, so in particular, the things, the secretions that are infectious are salvia, feces, blood and urine. so pretty much anything that comes out of a deer is going to be infectious and potential for transmitting disease.
Texas Chronic Wasting Disease CWD TSE Prion Symposium 2018 posted January 2019 VIDEO SET 18 CLIPS See Wisconsin update...terrible news, right after Texas updated map around 5 minute mark...
SATURDAY, JANUARY 19, 2019
Texas Chronic Wasting Disease CWD TSE Prion Symposium 2018 posted January 2019 VIDEO SET 18 CLIPS
for those that believe in all things stupid, like ted nugent, and say that cwd is not adversely affecting, look no further than Colorado, here's your sign...
Colorado Chronic Wasting Disease Response Plan December 2018
I. Executive Summary Mule deer, white-tailed deer, elk and moose are highly valued species in North America. Some of Colorado’s herds of these species are increasingly becoming infected with chronic wasting disease (CWD). As of July 2018, at least 31 of Colorado's 54 deer herds (57%), 16 of 43 elk herds (37%), and 2 of 9 moose herds (22%) are known to be infected with CWD. Four of Colorado's 5 largest deer herds and 2 of the state’s 5 largest elk herds are infected. Deer herds tend to be more heavily infected than elk and moose herds living in the same geographic area. Not only are the number of infected herds increasing, the past 15 years of disease trends generally show an increase in the proportion of infected animals within herds as well. Of most concern, greater than a 10-fold increase in CWD prevalence has been estimated in some mule deer herds since the early 2000s; CWD is now adversely affecting the performance of these herds.
snip...
(the map on page 71, cwd marked in red, is shocking...tss)
ORIGIN OF CHRONIC WASTING DISEASE TSE PRION?
COLORADO THE ORIGIN OF CHRONIC WASTING DISEASE CWD TSE PRION?
*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.
IN CONFIDENCE, REPORT OF AN UNCONVENTIONAL SLOW VIRUS DISEASE IN ANIMALS IN THE USA 1989
ALSO, one of the most, if not the most top TSE Prion God in Science today is Professor Adriano Aguzzi, and he recently commented on just this, on a cwd post on my facebook page August 20 at 1:44pm, quote;
''it pains me to no end to even contemplate the possibility, but it seems entirely plausible that CWD originated from scientist-made spread of scrapie from sheep to deer in the colorado research facility. If true, a terrible burden for those involved.'' August 20 at 1:44pm ...end
”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA viewed it as a wildlife problem and consequently not their province!” page 26.
Here is the latest on the cwd tse prion...terry
FRIDAY, NOVEMBER 08, 2019
***> EFSA Panel on Biological Hazards (BIOHAZ) Update on chronic wasting disease (CWD) III
TUESDAY, OCTOBER 29, 2019
America BSE 589.2001 FEED REGULATIONS, BSE SURVEILLANCE, BSE TESTING, and CJD TSE Prion
FRIDAY, DECEMBER 20, 2019
Missouri MDC Confirms 24 New Cases of Chronic Wasting Disease CWD TSE Prion
THURSDAY, DECEMBER 19, 2019
TEXAS Val Verde County White-tailed Deer Tests Positive for Chronic Wasting Disease CWD TSE Prion State Positive NOW at 147 Confirmed
TUESDAY, DECEMBER 17, 2019
Mississippi CWD TSE Prion Two confirmed cases with 10 more suspected this season to date
FRIDAY, DECEMBER 13, 2019
Wisconsin New CWD Detection in a Wild Deer Harvested in Sheboygan County During the 2019 Archery Deer Season
FRIDAY, DECEMBER 13, 2019
Tennessee CWD TSE Prion 2019 to 2020 Sample 148 Positive So Far
THURSDAY, DECEMBER 12, 2019
Michigan Total CWD TSE Prion Positive Suspect-Positive Deer Jump To 162 confirmed to date
WEDNESDAY, DECEMBER 11, 2019
South Dakota CWD TSE Prion Detected in Harding, Meade and Tripp Counties with 5 confirmed
TUESDAY, DECEMBER 10, 2019
Minnesota MBAH confirms an 8-year-old white-tailed doe tested positive for CWD from hobbyist herd in Douglas County
SATURDAY, DECEMBER 07, 2019
Montana Chronic wasting disease CWD TSE Prion explodes to 91 Cases This Year, with 25 of those confirmed last week
WEDNESDAY, NOVEMBER 27, 2019
Montana records first suspected case of CWD in wild elk
SATURDAY, DECEMBER 07, 2019
Arkansas CWD-positive deer found in Independence County
MONDAY, DECEMBER 16, 2019
Chronic Wasting Disease CWD TSE Prion aka mad cow type disease in cervid Zoonosis Update
***> ''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***
What if?
*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***
FRIDAY, OCTOBER 25, 2019
27th ANNUAL REPORT 2018 CREUTZFELDT-JAKOB DISEASE SURVEILLANCE IN THE UK
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA Diagnosis and Reporting of Creutzfeldt-Jakob Disease
To the Editor:
In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally..
Terry S. Singeltary, Sr Bacliff, Tex
1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323.
January 28, 2003; 60 (2) VIEWS & REVIEWS
Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States
Ermias D. Belay, Ryan A. Maddox, Pierluigi Gambetti, Lawrence B. Schonberger
First published January 28, 2003, DOI: https://doi.org/10.1212/01.WNL.0000036913.87823.D6
Abstract
Transmissible spongiform encephalopathies (TSEs) attracted increased attention in the mid-1980s because of the emergence among UK cattle of bovine spongiform encephalopathy (BSE), which has been shown to be transmitted to humans, causing a variant form of Creutzfeldt-Jakob disease (vCJD). The BSE outbreak has been reported in 19 European countries, Israel, and Japan, and human cases have so far been identified in four European countries, and more recently in a Canadian resident and a US resident who each lived in Britain during the BSE outbreak. To monitor the occurrence of emerging forms of CJD, such as vCJD, in the United States, the Centers for Disease Control and Prevention has been conducting surveillance for human TSEs through several mechanisms, including the establishment of the National Prion Disease Pathology Surveillance Center. Physicians are encouraged to maintain a high index of suspicion for vCJD and use the free services of the pathology center to assess the neuropathology of clinically diagnosed and suspected cases of CJD or other TSEs.
Received May 7, 2002. Accepted August 28, 2002.
RE-Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States
Terry S. Singeltary, retired (medically)
Published March 26, 2003
26 March 2003
Terry S. Singeltary, retired (medically) CJD WATCH
I lost my mother to hvCJD (Heidenhain Variant CJD). I would like to comment on the CDC's attempts to monitor the occurrence of emerging forms of CJD. Asante, Collinge et al [1] have reported that BSE transmission to the 129-methionine genotype can lead to an alternate phenotype that is indistinguishable from type 2 PrPSc, the commonest sporadic CJD. However, CJD and all human TSEs are not reportable nationally. CJD and all human TSEs must be made reportable in every state and internationally. I hope that the CDC does not continue to expect us to still believe that the 85%+ of all CJD cases which are sporadic are all spontaneous, without route/source. We have many TSEs in the USA in both animal and man. CWD in deer/elk is spreading rapidly and CWD does transmit to mink, ferret, cattle, and squirrel monkey by intracerebral inoculation. With the known incubation periods in other TSEs, oral transmission studies of CWD may take much longer. Every victim/family of CJD/TSEs should be asked about route and source of this agent. To prolong this will only spread the agent and needlessly expose others. In light of the findings of Asante and Collinge et al, there should be drastic measures to safeguard the medical and surgical arena from sporadic CJDs and all human TSEs. I only ponder how many sporadic CJDs in the USA are type 2 PrPSc?
Reply to Singletary Ryan A. Maddox, MPH Other Contributors: Published March 26, 2003
Mr. Singletary raises several issues related to current Creutzfeldt- Jakob disease (CJD) surveillance activities. Although CJD is not a notifiable disease in most states, its unique characteristics, particularly its invariably fatal outcome within usually a year of onset, make routine mortality surveillance a useful surrogate for ongoing CJD surveillance.[1] In addition, because CJD is least accurately diagnosed early in the course of illness, notifiable-disease surveillance could be less accurate than, if not duplicative of, current mortality surveillance.[1] However, in states where making CJD officially notifiable would meaningfully facilitate the collection of data to monitor for variant CJD (vCJD) or other emerging prion diseases, CDC encourages the designation of CJD as a notifiable disease.[1] Moreover, CDC encourages physicians to report any diagnosed or suspected CJD cases that may be of special public health importance (e.g...., vCJD, iatrogenic CJD, unusual CJD clusters).
As noted in our article, strong evidence is lacking for a causal link between chronic wasting disease (CWD) of deer and elk and human disease,[2] but only limited data seeking such evidence exist. Overall, the previously published case-control studies that have evaluated environmental sources of infection for sporadic CJD have not consistently identified strong evidence for a common risk factor.[3] However, the power of a case-control study to detect a rare cause of CJD is limited, particularly given the relatively small number of subjects generally involved and its long incubation period, which may last for decades. Because only a very small proportion of the US population has been exposed to CWD, a targeted surveillance and investigation of unusual cases or case clusters of prion diseases among persons at increased risk of exposure to CWD is a more efficient approach to detecting the possible transmission of CWD to humans. In collaboration with appropriate local and state health departments and the National Prion Disease Pathology Surveillance Center, CDC is facilitating or conducting such surveillance and case- investigations, including related laboratory studies to characterize CJD and CWD prions.
Mr. Singletary also expresses concern over a recent publication by Asante and colleagues indicating the possibility that some sporadic CJD cases may be attributable to bovine spongiform encephalopathy (BSE).[4] The authors reported that transgenic mice expressing human prion protein homozygous for methionine at codon 129, when inoculated with BSE prions, developed a molecular phenotype consistent with a subtype of sporadic CJD. Although the authors implied that BSE might cause a sporadic CJD-like illness among persons homozygous for methionine, the results of their research with mice do not necessarily directly apply to the transmission of BSE to humans. If BSE causes a sporadic CJD-like illness in humans, an increase in sporadic CJD cases would be expected to first occur in the United Kingdom, where the vast majority of vCJD cases have been reported. In the United Kingdom during 1997 through 2002, however, the overall average annual mortality rate for sporadic CJD was not elevated; it was about 1 case per million population per year. In addition, during this most recent 6-year period following the first published description of vCJD in 1996, there was no increasing trend in the reported annual number of UK sporadic CJD deaths.[3, 5] Furthermore, surveillance in the UK has shown no increase in the proportion of sporadic CJD cases that are homozygous for methionine (Will RG, National CJD Surveillance Unit, United Kingdom, 2003; personal communication)..
References
1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Diagnosis and reporting of Creutzfeldt-Jakob disease. JAMA 2001;285:733-734.
2. Belay ED, Maddox RA, Gambetti P, Schonberger LB. Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States.. Neurology 2003;60:176-181.
3. Belay ED. Transmissible spongiform encephalopathies in humans. Annu Rev Microbiol 1999;53:283-314.
4. Asante EA, Linehan JM, Desbruslais M, et al. BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J 2002;21:6358-6366.
5. The UK Creutzfeldt-Jakob Disease Surveillance Unit. CJD statistics. Available at: http://www.cjd.ed.ac.uk/figures.htm. Accessed February 18, 2003.
Competing Interests: None declared.
Volume 2: Science
4. The link between BSE and vCJD
Summary 4.29 The evidence discussed above that vCJD is caused by BSE seems overwhelming. Uncertainties exist about the cause of CJD in farmers, their wives and in several abattoir workers. It seems that farmers at least might be at higher risk than others in the general population. 1 Increased ascertainment (ie, increased identification of cases as a result of greater awareness of the condition) seems unlikely, as other groups exposed to risk, such as butchers and veterinarians, do not appear to have been affected. The CJD in farmers seems to be similar to other sporadic CJD in age of onset, in respect to glycosylation patterns, and in strain-typing in experimental mice. Some farmers are heterozygous for the methionine/valine variant at codon 129, and their lymphoreticular system (LRS) does not contain the high levels of PrPSc found in vCJD.
***>It remains a remote possibility that when older people contract CJD from BSE the resulting phenotype is like sporadic CJD and is distinct from the vCJD phenotype in younger people...end
BSE INQUIRY
SATURDAY, JUNE 23, 2018
CDC
***> Diagnosis of Methionine/Valine Variant Creutzfeldt-Jakob Disease by Protein Misfolding Cyclic Amplification
Volume 24, Number 7—July 2018 Dispatch
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
2 January 2000 British Medical Journal U.S.
Scientist should be concerned with a CJD epidemic in the U.S., as well
15 November 1999 British Medical Journal hvCJD in the USA * BSE in U.S..
FRIDAY, NOVEMBER 08, 2019
EFSA Panel on Biological Hazards (BIOHAZ) Update on chronic wasting disease (CWD) III
THURSDAY, SEPTEMBER 26, 2019
Veterinary Biologics Guideline 3.32E: Guideline for minimising the risk of introducing transmissible spongiform encephalopathy prions and other infectious agents through veterinary biologics
U.S.A. 50 STATE BSE MAD COW CONFERENCE CALL Jan. 9, 2001
Subject: BSE--U.S. 50 STATE CONFERENCE CALL Jan. 9, 2001
Date: Tue, 9 Jan 2001 16:49:00 -0800
From: "Terry S. Singeltary Sr."
Reply-To: Bovine Spongiform Encephalopathy
snip...
[host Richard Barns] and now a question from Terry S. Singeltary of CJD Watch.
[TSS] yes, thank you, U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?
[no answer, you could hear in the back ground, mumbling and 'we can't. have him ask the question again.]
[host Richard] could you repeat the question?
[TSS] U.S. cattle, what kind of guarantee can you give for serum or tissue donor herds?
[not sure whom ask this] what group are you with?
[TSS] CJD Watch, my Mom died from hvCJD and we are tracking CJD world-wide.
[not sure who is speaking] could you please disconnect Mr. Singeltary
[TSS] you are not going to answer my question?
[not sure whom speaking] NO
snip...see full archive and more of this;
FRIDAY, NOVEMBER 08, 2019
EFSA Panel on Biological Hazards (BIOHAZ) Update on chronic wasting disease (CWD) III
WEDNESDAY, NOVEMBER 20, 2019
Review: Update on Classical and Atypical Scrapie in Sheep and Goats
WEDNESDAY, NOVEMBER 20, 2019
Sheep Are Susceptible to the Bovine Adapted Transmissible Mink Encephalopathy agent by Intracranial Inoculation and Have Evidence of Infectivity in Lymphoid Tissues
***> ''indicating that sheep inoculated with the bovine TME agent harbor infectivity in their lymph nodes despite a lack of detection with conventional immunoassays.''
WEDNESDAY, MAY 29, 2019
Incomplete inactivation of atypical scrapie following recommended autoclave decontamination procedures USDA HERE'S YOUR SIGN!
REVIEW
***> In conclusion, sensory symptoms and loss of reflexes in Gerstmann-Sträussler-Scheinker syndrome can be explained by neuropathological changes in the spinal cord. We conclude that the sensory symptoms and loss of lower limb reflexes in Gerstmann-Sträussler-Scheinker syndrome is due to pathology in the caudal spinal cord. <***
***> The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology.<***
***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***
***> All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals.<***
***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***
Thursday, March 8, 2018
Familial human prion diseases associated with prion protein mutations Y226X and G131V are transmissible to transgenic mice expressing human prion protein
MONDAY, DECEMBER 16, 2019
Chronic Wasting Disease CWD TSE Prion aka mad cow type disease in cervid Zoonosis Update
***> ''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II) <***
What if?
FRIDAY, OCTOBER 25, 2019
27th ANNUAL REPORT 2018 CREUTZFELDT-JAKOB DISEASE SURVEILLANCE
me trying to explain all this a while back LOL...
Terry, why do you say the prions are mutating, when they don’t have DNA to mutate? Please clarify for me, please.
Terry Singeltary comment to JC
as tse prion moves from species to species, it changes, and some times they can become more virulent as they change from different species, as they merge into others, and some that did not transmit, after several passages through the species, same thing will then transmit, where it did not before, there are over 25 Strains of typical scrapie alone, if I remember correctly, and I think 🤔 5 now with CWD, with cattle...shoot 🤔 typical c-type bse, hbse, hgbse, lbse, ibncbse, and now aged cattle brain displaying Alzheimer’s-like pathology that can be propagated in a prionlike manner, what’s up with that? We will have to wait and see. I suggest you listen 👂 to the scientist here discuss different cwd strains far better than I can 😂
THURSDAY, DECEMBER 19, 2019
The emergence of classical BSE from atypical/Nor98 scrapie
Terry S. Singeltary Sr.